Math, asked by wamanraut82, 2 months ago

prove that sin A tan A/1-cos A =1+secA


Answers

Answered by guptavirag002
1

Answer:

sinA=2sinA/2.cosA/2

1-cosA=2sin²A/2.

so sinA/1-cosA=cot(A/2)

So, sinA.tanA/1-cosA=cot(A/2).tanA

=cos(A/2)/sin(A/2).sinA/cosA

=cos(A/2)/sin(A/2).2sin(A/2).cos(A/2)/cosA

=2cos²(A/2)/cosA

=1+cosA / cosA. ( as cosA=2cos²(A/2) - 1 )

=1+secA

Answered by Ladylaurel
14

Correct Question :-

Prove that:

\sf{\dfrac{sin \: A . tan \: A}{1 - cos \: A} = 1 + sec \: A}

Answer :-

L.H.S = \sf{\dfrac{sin \: A . tan \: A}{1 - cos \: A}}

\sf{\longrightarrow \: \dfrac{sin \: A . tan \: A}{1 - cos \: A}}

\sf{\longrightarrow \: \dfrac{sin \: A \times tan \: A}{1 - cos \: A}}

\sf{\longrightarrow \: \dfrac{sin \: A \times \dfrac{sin \: A}{cos \: A}}{1 - cos \: A}} \:  \:  \:  \: {}_{.. \: .. \: ..} \:  \: \bigg \{ \: tan \: A = \dfrac{sin \: A}{cos \: A} \bigg \}

\sf{\longrightarrow \: \dfrac{\dfrac{{sin}^{2} \: A}{cos \: A}}{1 - cos \: A}} \:  \:  \:  \: {}_{.. \: .. \: ..} \:  \: \{multiplying \: sin \: A \: and \: sin \: A \}

\sf{\longrightarrow \: \dfrac{{sin}^{2} \:  A}{cos \: A(1 - cos \: A)}} \:  \:  \:  \: {}_{.. \: .. \: ..} \:  \: \{transposing \: cos \: A \: to \:  denominator \}

\sf{\longrightarrow \: \dfrac{1 - {cos}^{2} \:  A}{cos \: A(1 - cos \: A)}}

\sf{\longrightarrow \: \dfrac{(1 - cos \: A)(1 + cos \:  A)}{cos \: A(1 - cos \: A)}}

\sf{\longrightarrow \: \dfrac{ \cancel{(1 - cos \: A)}(1 + cos \:  A)}{cos \: A \cancel{(1 - cos \: A)}}}

\sf{\longrightarrow \: \dfrac{1 + cos \: A}{cos \: A}}

 \sf{ \longrightarrow \:  \dfrac{1}{cos} + \dfrac{cos \: A}{cos \: A}}

 \sf{ \longrightarrow \:  \dfrac{1}{cos} + \cancel{ \dfrac{cos \: A}{cos \: A}}}

\sf{\longrightarrow \: \dfrac{1}{cos \: A} + 1 \:  \:  \:  \: {}_{.. \: .. \: ..} \:  \bigg \{ \: \dfrac{1}{cos \: A} = sec \: A \bigg \}}

\sf{\longrightarrow \: sec \: A + 1 = R.H.S}

Hence, Proved!

⠀⠀⠀⠀⠀ ______________________

THINGS TO REMEMBER :-

  • \sf{\dfrac{1}{cos \: A} = sec \: A}

  • \sf{tan \: A = \dfrac{sin \: A}{cos \: A}}

  • \sf{1 - {cos}^{2} \:  A = {sin}^{2} \: A}

rsagnik437: Very nice! :)
Ladylaurel: Thank you so much!
Similar questions