Math, asked by sumitgoswami5047, 11 months ago

Prove that sin alpha + sin beta + sin gamma - sin (alpha + beta + gamma)=4sin(alpha+beta/2) sin(beta+gamma/2) sin(gamma + alpha /2)

Answers

Answered by MaheswariS
80

Answer:

\bf{sin\alpha+sin\beta+sin\gamma-sin(\alpha+\beta+\gamma)=4\:sin(\frac{\alpha+\beta}{2})\:sin(\frac{\beta+\gamma}{2})\:sin(\frac{\gamma+\alpha}{2})}

Step-by-step explanation:

\text{Formula used:}

sinC+sinD=2\:sin(\frac{C+D}{2})\:cos(\frac{C-D}{2})

sinC-sinD=2\:cos(\frac{C+D}{2})\:sin(\frac{C-D}{2})

cosC-cosD=-2\:sin(\frac{C+D}{2})\:sin(\frac{C-D}{2})

\text{consider,}

sin\alpha+sin\beta+sin\gamma-sin(\alpha+\beta+\gamma)

=2\:sin(\frac{\alpha+\beta}{2})\:cos(\frac{\alpha-\beta}{2})+2\:cos(\frac{\gamma+\alpha+\beta+\gamma}{2})\:sin(\frac{\gamma-(\alpha+\beta+\gamma)}{2})

=2\:sin(\frac{\alpha+\beta}{2})\:cos(\frac{\alpha-\beta}{2})+2\:cos(\frac{\alpha+\beta+2\gamma}{2})\:sin(\frac{-(\alpha+\beta)}{2})

=2\:sin(\frac{\alpha+\beta}{2})\:cos(\frac{\alpha-\beta}{2})-2\:cos(\frac{\alpha+\beta+2\gamma}{2})\:sin(\frac{\alpha+\beta}{2})

=2\:sin(\frac{\alpha+\beta}{2})[cos(\frac{\alpha-\beta}{2})-cos(\frac{\alpha+\beta+2\gamma}{2})]

=2\:sin(\frac{\alpha+\beta}{2})[-2\:sin(\frac{(\frac{\alpha-\beta}{2})+(\frac{\alpha+\beta+2\gamma}{2})}{2}\:sin(\frac{(\frac{\alpha-\beta}{2})-(\frac{\alpha+\beta+2\gamma}{2})}{2})]

=2\:sin(\frac{\alpha+\beta}{2})[-2\:sin(\frac{(\frac{2\alpha+2\gamma}{2})}{2})\:sin(\frac{(\frac{-2\beta-2\gamma}{2})}{2})

=2\:sin(\frac{\alpha+\beta}{2})[-2\:sin(\frac{\alpha+\gamma}{2})\:sin(\frac{-(\beta+\gamma)}{2})

=2\:sin(\frac{\alpha+\beta}{2})[-2\:sin(\frac{\alpha+\gamma}{2})\:(-sin(\frac{\beta+\gamma}{2}))

=4\:sin(\frac{\alpha+\beta}{2})\:sin(\frac{\alpha+\gamma}{2})\:sin(\frac{\beta+\gamma}{2})

\implies\:\bf{sin\alpha+sin\beta+sin\gamma-sin(\alpha+\beta+\gamma)=4\:sin(\frac{\alpha+\beta}{2})\:sin(\frac{\beta+\gamma}{2})\:sin(\frac{\gamma+\alpha}{2})}

Answered by schannpreet827
5

Answer:

sinC+sinD=2sin(

2

C+D

)cos(

2

C−D

)

sinC-sinD=2\:cos(\frac{C+D}{2})\:sin(\frac{C-D}{2})sinC−sinD=2cos(

2

C+D

)sin(

2

C−D

)

cosC-cosD=-2\:sin(\frac{C+D}{2})\:sin(\frac{C-D}{2})cosC−cosD=−2sin(

2

C+D

)sin(

2

C−D

)

\text{consider,}consider,

sin\alpha+sin\beta+sin\gamma-sin(\alpha+\beta+\gamma)sinα+sinβ+sinγ−sin(α+β+γ)

=2\:sin(\frac{\alpha+\beta}{2})\:cos(\frac{\alpha-\beta}{2})+2\:cos(\frac{\gamma+\alpha+\beta+\gamma}{2})\:sin(\frac{\gamma-(\alpha+\beta+\gamma)}{2})=2sin(

2

α+β

)cos(

2

α−β

)+2cos(

2

γ+α+β+γ

)sin(

2

γ−(α+β+γ)

)

=2\:sin(\frac{\alpha+\beta}{2})\:cos(\frac{\alpha-\beta}{2})+2\:cos(\frac{\alpha+\beta+2\gamma}{2})\:sin(\frac{-(\alpha+\beta)}{2})=2sin(

2

α+β

)cos(

2

α−β

)+2cos(

2

α+β+2γ

)sin(

2

−(α+β)

)

=2\:sin(\frac{\alpha+\beta}{2})\:cos(\frac{\alpha-\beta}{2})-2\:cos(\frac{\alpha+\beta+2\gamma}{2})\:sin(\frac{\alpha+\beta}{2})=2sin(

2

α+β

)cos(

2

α−β

)−2cos(

2

α+β+2γ

)sin(

2

α+β

)

=2\:sin(\frac{\alpha+\beta}{2})[cos(\frac{\alpha-\beta}{2})-cos(\frac{\alpha+\beta+2\gamma}{2})]=2sin(

2

α+β

)[cos(

2

α−β

)−cos(

2

α+β+2γ

)]

=2\:sin(\frac{\alpha+\beta}{2})[-2\:sin(\frac{(\frac{\alpha-\beta}{2})+(\frac{\alpha+\beta+2\gamma}{2})}{2}\:sin(\frac{(\frac{\alpha-\beta}{2})-(\frac{\alpha+\beta+2\gamma}{2})}{2})]=2sin(

2

α+β

)[−2sin(

2

(

2

α−β

)+(

2

α+β+2γ

)

sin(

2

(

2

α−β

)−(

2

α+β+2γ

)

)]

=2\:sin(\frac{\alpha+\beta}{2})[-2\:sin(\frac{(\frac{2\alpha+2\gamma}{2})}{2})\:sin(\frac{(\frac{-2\beta-2\gamma}{2})}{2})=2sin(

2

α+β

)[−2sin(

2

(

2

2α+2γ

)

)sin(

2

(

2

−2β−2γ

)

)

=2\:sin(\frac{\alpha+\beta}{2})[-2\:sin(\frac{\alpha+\gamma}{2})\:sin(\frac{-(\beta+\gamma)}{2})=2sin(

2

α+β

)[−2sin(

2

α+γ

)sin(

2

−(β+γ)

)

=2\:sin(\frac{\alpha+\beta}{2})[-2\:sin(\frac{\alpha+\gamma}{2})\:(-sin(\frac{\beta+\gamma}{2}))=2sin(

2

α+β

)[−2sin(

2

α+γ

)(−sin(

2

β+γ

))

=4\:sin(\frac{\alpha+\beta}{2})\:sin(\frac{\alpha+\gamma}{2})\:sin(\frac{\beta+\gamma}{2})=4sin(

2

α+β

)sin(

2

α+γ

)sin(

2

β+γ

)

\implies\:\bf{sin\alpha+sin\beta+sin\gamma-sin(\alpha+\beta+\gamma)=4\:sin(\frac{\alpha+\beta}{2})\:sin(\frac{\beta+\gamma}{2})\:sin(\frac{\gamma+\alpha}{2})}⟹sinα+sinβ+sinγ−sin(α+β+γ)=4sin(

2

α+β

)sin(

2

β+γ

)sin(

2

γ+α

)

Step-by-step explanation:

please make brainlist answer and please follow me

Similar questions