prove that sin-cos+1/sin+cos-1=1/Sec-tan
Answers
GIVEN:-
LHS=
( sinx-cosx+1) / (sinx+cosx-1)
TO PROVE:-
RHS =
secx-tanx. ( after correction)
SOLUTION:-
LHS=
(sinx-cosx+1) / (sinx+cosx-1)
multipliying by numerator in numerator and denominator both we have.
= [sinx-(cosx-1)]² / [ sin²x-(cosx-1)²]
sin²x+(cosx-1)²-2sinx(cosx-1)
= ------------------------------------------
sin²x-cos²x-1+2cosx
sin²x+cos²x+1-2cosx-2sinxcosx+2sinx
= -------------------------------------------------------
-2cos²x+2 cosx
2-2cosx-2sinxcosx+2sinx
= -----------------------------------------
-2cos²x +2cosx
2(1-cosx)-2sinx(1-cosx)
= -------------------------------------
2cosx(1-cosx)
2 (1-cosx) (1-sinx)
=. -------------------------
2(1-cosx) cosx
1-sinx
= ------------
cosx
= (1/cosx) - (sinx/cosx)
= secx-tanx
= RHS