Prove that (sin θ − cos θ + 1) / (sin θ + cos θ − 1) = 1 / (sec θ − tan θ) using the identity sec² θ + tan² θ = 1.
Answers
Answered by
2
Hi ,
Here I'm taking ' A ' instead of theta.
LHS= ( sinA + cosA - 1 )/(sinA+cosA-1)
divide numerator and denominator
with cosA , we get
= ( tanA-1+secA)/(tanA+1-secA)
=( tanA+secA-1)/(tanA+1-secA)
=[(tanA+secA+(sec²A-tan²A)]/(tanA+1-secA)
=[(tanA+secA)+(secA+tanA)(secA-tanA)]/(tanA+1-secA)
= {(tanA+secA)[1 -(secA-tanA )]}/(tanA+1-secA)
= [(tanA+secA)(1-secA+tanA)](1-secA+tanA)
after cancellation ,
= tanA + secA
= [( secA + tanA )(secA - tanA )]/( secA-tanA)
= ( sec²A - tan²A )/( secA - tanA )
= 1/( secA - tanA )
= RHS
I hope this helps you.
: )
Here I'm taking ' A ' instead of theta.
LHS= ( sinA + cosA - 1 )/(sinA+cosA-1)
divide numerator and denominator
with cosA , we get
= ( tanA-1+secA)/(tanA+1-secA)
=( tanA+secA-1)/(tanA+1-secA)
=[(tanA+secA+(sec²A-tan²A)]/(tanA+1-secA)
=[(tanA+secA)+(secA+tanA)(secA-tanA)]/(tanA+1-secA)
= {(tanA+secA)[1 -(secA-tanA )]}/(tanA+1-secA)
= [(tanA+secA)(1-secA+tanA)](1-secA+tanA)
after cancellation ,
= tanA + secA
= [( secA + tanA )(secA - tanA )]/( secA-tanA)
= ( sec²A - tan²A )/( secA - tanA )
= 1/( secA - tanA )
= RHS
I hope this helps you.
: )
Similar questions
Science,
7 months ago
English,
7 months ago
Math,
1 year ago
Chemistry,
1 year ago
India Languages,
1 year ago