Math, asked by usmankhan786usman555, 4 months ago

Prove that sin? + cos²0 =1.​

Answers

Answered by ratnala380
1

Answer:

your answer it will help u

Attachments:
Answered by Ladylaurel
13

Appropriate Question -:

Prove that:

 \sf{{sin}^{2} \theta + {cos}^{2} \theta = 1}

Answer :-

Let's take a right-angled triangle ABC, where angle B = 90°,

FIGURE :-

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf C}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf A}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $\Theta$}\end{picture}

  • Refer the attachment.

We know,

\sf{sine(sin) = \dfrac{Perpendicular}{Hypotenuse}}

\sf{cosine(cos) = \dfrac{base}{Hypotenuse}}

Therefore,

\longrightarrow \:  \: \sf{sin \theta = \dfrac{BC}{AC}}

And

\longrightarrow \:  \: \sf{cos \theta = \dfrac{AB}{AC}}

Now,

 \\

(sin²θ + cos²θ) = \sf{\bigg( \dfrac{BC}{AC} \bigg)} + \sf{\bigg( \dfrac{AB}{AC} \bigg)}

\sf{ \longrightarrow \: {\bigg( \dfrac{BC}{AC} \bigg)}^{2} +  {\bigg( \dfrac{AB}{AC} \bigg)}^{2}}

\sf{ \longrightarrow \:  \dfrac{{BC}^{2} + {AB}^{2}}{{AC}^{2}}}

\sf{ \longrightarrow \:  \dfrac{{AC}^{2}}{{AC}^{2}}}

[AC² in numerator BC² + AB² = AC²],

\sf{ \longrightarrow \: \cancel{ \dfrac{{AC}^{2}}{{AC}^{2}}}}

\sf{ \longrightarrow \: 1}

 \\

Hence,

 \dag \:  \:  \:  \:  \:  \:  \:  \bf{{sin}^{2} \theta + {cos}^{2} \theta = 1}

Attachments:
Similar questions