Prove that (sinθ - cosecθ)(cosθ - secθ) = 1/(tanθ + cotθ)
Answers
Answered by
41
LHS=(1/sinФ - sinФ) (1/cosФ -cosФ)
=((1-sin²Ф)/sinФ) ((1-cos²Ф)/cosФ)
=(cos²Ф/sinФ) (sin²Ф/cosФ)
=cosФsinФ ----1
RHS = 1/(sinФ/cosФ +cosФ/sinФ)
=1/((sin²Ф+cos²Ф)/(sinФcosФ))
=1/(1/cosФ)(1/sinФ)
=cosФsinФ----2
LHS = RHS
(cosecФ-sinФ)(secФ-cosФ)=1/tanФ+cotФ
Similar questions