prove that: (sin - cosec)(cos-sec)=1/tan+cot
Answers
Answered by
12
Sol:
LHS = (Cosec A - Sin A) (Sec A - Cos A)
= (1/sin A - Sin A)(1/cos A - cos A)
= [(1 - sin2 A)/sin A] [(1 - cos2 A)/cos A]
= [(cos2 A)/sin A][sin2 A/cos A]
= sin A cos A
RHS = 1 / (Tan A + Cot A)
= 1 / (sin A/cos A + cos A/sin A)
= 1 / [(sin2 A + cos2 A)/sin A cos A]
= 1 / [1/sin A cos A]
= sin A cos A
LHS = RHS
Hence proved.v
RishabhBansal:
its also a good method
Answered by
11
Hey!!!!
Good Evening
We have to prove
(sinA - cosecA) (cosA - secA) = 1/(tanA + cotA)
LHS = (sinA - cosecA) (cosA - secA)
= (sinA - 1/sinA) (cosA - 1/cosA)
= [ (sin²A - 1)/sinA ] [ (cos²A - 1)/cosA ]
= (cos²A/sinA) (sin²A/cosA)
After cancelling
= sinAcosA
Multiply and divide by tanA + cotA
= (sinAcosA)(tanA + cotA)/(tanA + cotA)
= (sin²A + cos²A)/(tanA + cotA)
= 1/(tanA + cotA)
= RHS
HENCE PROVED
Hope this helps
Good Evening
We have to prove
(sinA - cosecA) (cosA - secA) = 1/(tanA + cotA)
LHS = (sinA - cosecA) (cosA - secA)
= (sinA - 1/sinA) (cosA - 1/cosA)
= [ (sin²A - 1)/sinA ] [ (cos²A - 1)/cosA ]
= (cos²A/sinA) (sin²A/cosA)
After cancelling
= sinAcosA
Multiply and divide by tanA + cotA
= (sinAcosA)(tanA + cotA)/(tanA + cotA)
= (sin²A + cos²A)/(tanA + cotA)
= 1/(tanA + cotA)
= RHS
HENCE PROVED
Hope this helps
Similar questions