Math, asked by SyedAsif, 1 year ago

Prove that,
Sin cube theta + cos cube theta /sin theta cos theta = 1- sin theta cos theta.

Answers

Answered by MaheswariS
1

\underline{\textbf{To prove:}}

\mathsf{\dfrac{sin^3\theta+cos^3\theta}{sin\theta+cos\theta}=1-sin\theta\,cos\theta}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{sin^3\theta+cos^3\theta}{sin\theta+cos\theta}}

\textsf{Using the identity,}\;\;\boxed{\mathsf{a^3+b^3=(a+b)(a^2-ab+b^2)}}

\mathsf{=\dfrac{(sin\theta+cos\theta)(sin^2\theta-sin\theta\,cos\theta+cos^2\theta)}{sin\theta+cos\theta}}

\mathsf{=sin^2\theta-sin\theta\,cos\theta+cos^2\theta}

\mathsf{=sin^2\theta+cos^2\theta-sin\theta\,cos\theta}

\textsf{Using the identity,}\;\;\boxed{\mathsf{sin^2A+cos^2A=1}}

\mathsf{=1-sin\theta\,cos\theta}

\implies\boxed{\mathsf{\dfrac{sin^3\theta+cos^3\theta}{sin\theta+cos\theta}=1-sin\theta\,cos\theta}}

Similar questions