Prove that sin inverse 8/17+sin inverse 3/5= tan inverse 77/36
Answers
Answer:
Step-by-step explanation:
Let, a=sin^-1 8/17
∴ sin a=8/17 → (i)
and b=sin^-1 3/5
∴ sin b= 3/5 → (ii)
Now, cos^2 a= 1-sin^ a
cos a= √(1-sin^2 a)
=√{1-(8/17)^2}
=√(1-64/289)
=15/17
∴ cos a=15/17
Again, cos b =√(1-sin^2b)
=√{1-(3/5)^2}
=√(1-9/25)
∴ cos b= 4/5
Let, tan a= sin a/ cos a
=(8/17)/(15/17)
∴∴tan a= 8/15
Again let, tan b= sin b/cos b
=(3/5)/(4/5)
∴ tan b= 3/4
Now, tan(a+b)=(tan a + tan b)/(1 - tan a tan b)
= (8/15 + 3/4)/(1 - 8/15×3/4)
∴ tan(a+b)= 77/36
Hence, tan(a+b)=77/36
∴ a+b=tan^-1 77/36
Putting value of a and b we get,
sin^-1 8/17 + sin^-1 3/5= tan^-1 77/36
Hence proved.
Question:—
- Prove that sin inverse 8/17+sin inverse 3/5= tan inverse 77/36.
AnswEr:—
let sin-¹ 8/17 = x......(1)
→sin x = 8/17
cos x =√1-sin²x = √225/289 = 15/17
Then,
→tan x = sinx/cosx
→ tanx = 8/15
→ x = tan-¹ 8/15
comparing from eq(1) we get,
sin-¹ 8/17 = tan-¹ 8/15......(ii)
Similarly
let sin-¹3/5 = y .......(iii)
→ sin y= 3/5
cos y= √1-9/25 = 4/5
then ,
tan y = siny/cosy
→ tan y = 3/4
→ tan-¹ 3/4 = y
comparing from eq(iii) we get
→ sin-¹ 3/5 = tan-¹ 3/4 .....(iv)
putting the values of( ii) and (iv) into LHS
→tan-¹8/15 + tan-¹3/4
using formula tan-¹x + tan-¹ y = tan-¹(x+y/1-xy)
= tan-¹( 8/15+3/4/1-8/15×3/4)
= tan-¹ (77/36)
which is RHS
Hence proved