Math, asked by AbhiramiGNath, 1 year ago

PROVE THAT

sin ( n +1) X sin ( n+2) X + cos ( n +1) X cos ( n +2) X = cos X.


Answers

Answered by FIREBIRD
21
Identity: cos(s-t)=cos(s)x*cos(t)x+sin(s)x*sin(t)x
cos(s-t)=cos(s)x*cos(t)x+sin(s)x*sin(t)x
cos((n+1)x)-((n+2)x=cos(n+1)x*cos(n+2)x+sin(n+1)x*sin(n+2)x
cos((nx+x)-(nx+2x))=cos(n+1)x*cos(n+2)x+sin(n+1)x*sin(n+2)x
cos((nx+x)-(nx+2x))=cos(nx+x-nx-2x)=cos(-x)=cos(x)
verified: left side=right side


plz mark as the brainliest
Answered by saurabhsemalti
4
we know
 \cos(x  -  y)  =  \sin(x)  \sin(y)  +  \cos(x)  \cos(y)  \\
so here
x=(n+2)X
y=(n+1)X
so compare and see the Lhs becomes
 \cos((n + 2)x - (n + 1)x)  =  \cos(x)
.mark as brainliest if helped
Similar questions