Math, asked by aakashbhatia030, 1 year ago

Prove that : sin pi/10 + sin 13pi/10=-1/2

Answers

Answered by MVB
103
sin π 10 + sin 13 π 10
= - sin π 10 + sin π + 3 π 10
= - sin π 10 - sin 3 π 10
= - sin π 10 - sin π 2 - 2 π 10 =
= - sin π 10 - sin 2 π
= -1/2


Answered by hotelcalifornia
68

Answer:

Hence proved that the given expression \sin \left( \frac { \pi } { 10 } \right) + \sin \left( \frac { 13 \pi } { 10 } \right)is equal to -1/2  

To find:

Prove that :  

\sin \left( \frac { \pi } { 10 } \right) + \sin \left( \frac { 13 \pi } { 10 } \right) = - \frac { 1 } { 2 }

Solution:

Given,

\sin \left( \frac { \pi } { 10 } \right) + \sin \left( \frac { 13 \pi } { 10 } \right)

Splitting out the terms, we get,

\sin \left( \frac { 13 \pi } { 10 } \right) = \sin \left( \pi + \frac { 3 \pi } { 10 } \right)

Substituting this in the above equation,

= \sin \left( \frac { \pi } { 10 } \right) + \sin \left( \pi + \frac { 3 \pi } { 10 } \right)

We know that, \sin ( \pi + \theta ) = - \sin \theta

Substituting this in the above equation, we get,

\begin{array} { c } { = \sin \left( \frac { \pi } { 10 } \right) - \sin \left( \frac { 3 \pi } { 10 } \right) } \\\\ { = \sin \left( \frac { \pi } { 10 } \right) - \sin \left( \frac { \pi } { 2 } - \frac { 2 \pi } { 10 } \right) } \\\\ { = \sin \left( \frac { \pi } { 10 } \right) - \sin \frac { \pi } { 2 } } \\\\ { = - \frac { 1 } { 2 } } \end{array}

Thus the value of

\sin \left( \frac { \pi } { 10 } \right) + \sin \left( \frac { 13 \pi } { 10 } \right) = - \frac { 1 } { 2 }

Hence proved that the given expression \sin \left( \frac { \pi } { 10 } \right) + \sin \left( \frac { 13 \pi } { 10 } \right)is equal to -1/2  

Similar questions