Math, asked by lul63, 11 months ago

prove that sin∅.sin(60°-∅).sin(60°+∅)=1/4 sin3∅​

Answers

Answered by sahildhande987
6

Step-by-step explanation:

see the attachment mate

Attachments:
Answered by Anonymous
9

SOLUTION

L.H.S

 =  > sin \theta.sin(60 -  \theta).sin(60 +  \theta) \\  =  > sin \theta.(sin60cos \theta  - cos60 \: sin \theta).(sin60  \cos \theta + cos60 \sin \theta) \\  =  > sin \theta.(sin {}^{2} 60 \cos {}^{2}  \theta -  {cos}^{2} 60 {sin}^{2}  \theta) \\  =  > sin \theta.( \frac{3}{4} ) {cos}^{2}  \theta -  (\frac{1}{4} ) {sin}^{2}  \theta \\  =  > sin \theta.( \frac{3}{4} ) - ( \frac{3}{4} )sin {}^{2}  \theta - ( \frac{1}{4} )sin {}^{2}  \theta \\  =  > sin \theta( \frac{3}{4} ) - sin { }^{2}  \theta \\  =  > ( \frac{3}{4} )sin \theta - sin {}^{3}  \theta \\  =  >  \frac{1}{4} (3sin \theta - 4sin {}^{3}  \theta) \\  \\  =  >  \frac{1}{4} sin {}^{3}  \theta

R.H.S

hope it helps ☺️

Similar questions