Prove that sin square 40 +sin square 50 /cos square 20 +cos square 70 +tan 10 tan 20 tan 60 tan 70 tan 80 =1+root 3
Answers
★ We know that : cosθ = sin(90 - θ)
cos20 = sin(90 - 20) = sin70
★ We know that : tanθ = cot(90 - θ)
tan10 = cot(90 - 10) = cot80
tan20 = cot(90 - 20) = cot70
Substituting the above values in the given question, We get :
★ We know that : sin²θ + cos²θ = 1
sin²70 + cos²70 = 1
★ We know that : tanθ.cotθ = 1
cot80.tan80 = 1
cot70.tan70 = 1
★ We know that : sinθ = cos(90 - θ)
sin40 = cos(90 - 40) = cos50
Answer:
Given:sin
2
40+
cos
2
20+cos
2
70
sin
2
50
+tan10.tan20.tan60.tan70.tan80
★ We know that : cosθ = sin(90 - θ)
:\implies:⟹ cos20 = sin(90 - 20) = sin70
★ We know that : tanθ = cot(90 - θ)
:\implies:⟹ tan10 = cot(90 - 10) = cot80
:\implies:⟹ tan20 = cot(90 - 20) = cot70
Substituting the above values in the given question, We get :
\mathsf{\implies sin^240 + \dfrac{sin^250}{sin^270 + cos^270} + cot80.cot70.tan60.tan70.tan80}⟹sin
2
40+
sin
2
70+cos
2
70
sin
2
50
+cot80.cot70.tan60.tan70.tan80
★ We know that : sin²θ + cos²θ = 1
:\implies:⟹ sin²70 + cos²70 = 1
\mathsf{\implies sin^240 + sin^250 + cot80.tan80.cot70.tan70.tan60}⟹sin
2
40+sin
2
50+cot80.tan80.cot70.tan70.tan60
★ We know that : tanθ.cotθ = 1
:\implies:⟹ cot80.tan80 = 1
:\implies:⟹ cot70.tan70 = 1
\mathsf{\implies sin^240 + sin^250 + tan60}⟹sin
2
40+sin
2
50+tan60
★ We know that : sinθ = cos(90 - θ)
:\implies:⟹ sin40 = cos(90 - 40) = cos50
\mathsf{\implies cos^250 + sin^250 + tan60}⟹cos
2
50+sin
2
50+tan60
\begin{gathered}\mathsf{\implies 1 + tan60}\\\\\mathtt{(since\;\;sin^250 + cos^250 = 1)}\end{gathered}
⟹1+tan60
(sincesin
2
50+cos
2
50=1)
\bigstar\;\;\mathsf{We\;know\;that : tan60 = \sqrt{3}}★Weknowthat:tan60=
3
\mathsf{\implies 1 + \sqrt{3}}⟹1+
3