Math, asked by Franklin35291, 1 day ago

Prove that sin square 75 - cos square 45 is equals to root 3 by 4

Answers

Answered by mathdude500
5

Question :-

Prove that

\rm \:  {sin}^{2}75\degree  -  {cos}^{2}45\degree  = \dfrac{ \sqrt{3} }{4}  \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \:  {sin}^{2}75\degree  -  {cos}^{2}45\degree  \\

can be rewritten as

\rm \: =  \:  - ( {cos}^{2}45\degree  -  {sin}^{2}75\degree ) \\

We know,

\boxed{\sf{  \: {cos}^{2}x -  {sin}^{2}y = cos(x + y) \: cos(x - y) \: }} \\

So, using this, we get

\rm \: =  \:  - \bigg(cos(45\degree  + 75\degree ) \: cos(45\degree  - 75\degree)  \bigg)  \\

\rm \: =  \:  - \bigg(cos(120\degree) \: cos( - 30\degree)  \bigg)  \\

We know,

\boxed{\sf{  \:cos( - x) = cosx \: }} \\

So, using this, we get

\rm \: =  \:  - cos(180\degree  - 60\degree ) \: cos30\degree  \\

We know,

\boxed{\sf{  \:cos(180\degree  - x) \:  =  \:  -  \: cosx \: }} \\

So, using this, we get

\rm \: =  \: cos60\degree  \: cos30\degree  \\

\rm \: =  \: \dfrac{ \sqrt{3} }{2}  \times \dfrac{1}{2} \\

\rm \: =  \: \dfrac{ \sqrt{3} }{4} \\

Hence,

\rm\implies \:\boxed{\sf{  \: \: \rm \:  {sin}^{2}75\degree  -  {cos}^{2}45\degree  = \dfrac{ \sqrt{3} }{4}  \: }} \\

 \green{\large\underline{\sf{Aliter \: Solution-}}}

Consider LHS

\rm \:  {sin}^{2}75\degree  -  {cos}^{2}45\degree  \\

can be rewritten as

\rm \: \rm \: \dfrac{1}{2}\bigg(2{sin}^{2}75\degree  -  2{cos}^{2}45\degree\bigg)  \\

We know,

\boxed{\sf{  \:cos2x = 1 -  {2sin}^{2}x \: }} \\

and

\boxed{\sf{  \:cos45\degree  =  \frac{1}{ \sqrt{2} }  \: }} \\

So, using this, we get

\rm \: =  \: \dfrac{1}{2}\bigg(1 - cos150\degree  - 2 \times \dfrac{1}{2}  \bigg)  \\

\rm \: =  \: \dfrac{1}{2}\bigg(1 - cos(180\degree  - 30\degree ) - 1  \bigg)  \\

We know,

So, using this, we get

\rm \: =  \: \dfrac{1}{2}\bigg(cos30\degree\bigg)  \\

\rm \: =  \: \dfrac{1}{2}  \times \dfrac{ \sqrt{3} }{2}  \\

\rm \: =  \: \dfrac{ \sqrt{3} }{4}  \\

Hence,

\rm\implies \:\boxed{\sf{  \: \: \rm \:  {sin}^{2}75\degree  -  {cos}^{2}45\degree  = \dfrac{ \sqrt{3} }{4}  \: }} \\

 \green{\large\underline{\sf{Aliter \: Solution-}}}

Consider LHS

\rm \:  {sin}^{2}75\degree  -  {cos}^{2}45\degree  \\

Consider

\rm \: sin75\degree  \\

\rm \: =  \: sin(45\degree  + 30\degree ) \\

\rm \: =  \: sin45\degree cos30\degree  + sin30\degree cos45\degree  \\

\rm \: =  \: \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  + \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2}  \\

\rm \: =  \: \dfrac{ \sqrt{3} }{2 \sqrt{2} }  + \dfrac{1}{2 \sqrt{2} }  \\

\rm \: =  \: \dfrac{ \sqrt{3} + 1 }{2 \sqrt{2} }  \\

\rm\implies \:sin75\degree  =  \: \dfrac{ \sqrt{3} + 1 }{2 \sqrt{2} }  \\

Now, Consider

\rm \:  {sin}^{2}75\degree  -  {cos}^{2}45\degree  \\

So, on substituting the values, we get

\rm \: =  \:  {\bigg(\dfrac{ \sqrt{3} + 1 }{2 \sqrt{2} }  \bigg) }^{2}  -  {\bigg(\dfrac{1}{ \sqrt{2} } \bigg) }^{2}  \\

\rm \: =  \: \dfrac{3 + 1 + 2 \sqrt{3} }{8}  - \dfrac{1}{2}

\rm \: =  \: \dfrac{4+ 2 \sqrt{3} }{8}  - \dfrac{1}{2}

\rm \: =  \: \dfrac{4+ 2 \sqrt{3}  - 4}{8}   \\

\rm \: =  \: \dfrac{2 \sqrt{3}}{8}   \\

\rm \: =  \: \dfrac{\sqrt{3}}{4}   \\

Hence,

\rm\implies \:\boxed{\sf{  \: \: \rm \:  {sin}^{2}75\degree  -  {cos}^{2}45\degree  = \dfrac{ \sqrt{3} }{4}  \: }} \\

Answered by Missincridedible
5

\color{red}\boxed{\colorbox{blue}{MISSINCRIDEDIBLE HERE}}

Attachments:
Similar questions