Math, asked by suraj5912, 11 months ago

prove that sin square A + cos square A . tan square A = 2 sin square A​

Answers

Answered by charanlightning
0

Answer:

Step-by-step explanation:

sin²A  + cos²A × sin²A/cos²A      ( tan A = sin A/cos A)

= sin²A + sin²A

=2 sin² A

Answered by Anonymous
0

Solution

  </strong><strong>=</strong><strong> </strong><strong>{sin}^{2}a +  {cos}^{2}a \times  {tan}^{2}a

 </strong><strong>=</strong><strong>{sin}^{2} a +  {cos}^{2} a \times  \frac{ {sin}^{2}a }{ {cos}^{2}a }

Cos²a will be cancelled by Cos²a ,

</strong><strong>=</strong><strong> {sin}^{2}  +  {sin}^{2} a

\boxed{=2 sin^{2}a}

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions