prove that sin square alpha by cot alpha + cos square alpha by tan alpha + 2 sin alpha cos alpha is =sec alpha cosec alpha =tan alpha +cot alha
Answers
Explanation:
Since we have given that
(\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)=\sec \alpha+\cosec \alpha(sinα+cosα)(tanα+cotα)=secα+cosecα
We need to prove it .
From L.H.S. ,
\begin{lgathered}(\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)\\\\=(\sin \alpha+\cos \alpha)(\frac{\sin \alpha}{\cos \alpha}+\frac{\cos\alpha}{\sin \alpha})\\\\=(\sin \alpha+\cos \alpha)(\frac{\sin^2\alpha+\cos^2\alpha}{\sin \alpha \cos \alpha})\\\\=(\sin \alpha+\cos \alpha)(\frac{1}{\sin \alpha \cos \alpha})\\\\=(\frac{\sin \alpha}{\sin \alpha \cos \alpha})+(\frac{\cos \alpha}{\sin \alpha \cos \alpha})\\\\=\sec \alpha+cosec\ \alpha\end{lgathered}
(sinα+cosα)(tanα+cotα)
=(sinα+cosα)(
cosα
sinα
+
sinα
cosα
)
=(sinα+cosα)(
sinαcosα
sin
2
α+cos
2
α
)
=(sinα+cosα)(
sinαcosα
1
)
=(
sinαcosα
sinα
)+(
sinαcosα
cosα
)
=secα+cosec α
Aɴꜱᴡᴇʀ
_________________
Gɪᴠᴇɴ
_________________
ᴛᴏ ᴘʀᴏᴠᴇ
_________________
Sᴛᴇᴘꜱ
First we take LHS
= [ sin alpha + cos alpha] [ 1/ (cos alpha ×sin alpha )]
= [ sin alpha + cos alpha] / [ sin alpha × cos alpha]
Now we take RHS
= sec alpha + cosec alpha
= 1/cos alpha + 1/sin alpha
= [ sin alpha + cos alpha] / [sin alpha × cos alpha ]
Now ,
LHS = RHS
HENCE PROVED
_________________