prove that sin square x minus sin square 4 X equal to sin 12 x sin 4x
Answers
Answered by
2
Answer:
Step-by-step explanation:
L.H.S. = sin 2x + 2 sin 4x + sin 6x
= [sin 2x + sin 6x] + 2 sin 4x
= 2[sin(2x + 6x/2)(2x - 6x/2)]+2 sin 4x
= [∵ sin A + sin B = 2 sin (A + B/2) cos (A - B/2)]
= 2 sin 4x cos (– 2x) + 2 sin 4x
= 2 sin 4x cos 2x + 2 sin 4x
= 2 sin 4x (cos 2x + 1)
= 2 sin 4x (2 cos2 x – 1 + 1)
= 2 sin 4x (2 cos2 x)
= 4cos2 x sin 4x
= R.H.S.
Answered by
1
Consider the provided information.
\sin^2A\cos^2B-\cos^2A\sin^2B=\sin^2A-\sin^2B
Consider the LHS.
\sin^2A\cos^2B-\cos^2A\sin^2B
\sin^2A(1-\sin^2B)-(1-\sin^2A)\sin^2B (∴\cos^2x=1-\sin^2x)
\sin^2A-\sin^2A\sin^2B-\sin^2B+\sin^2A\sin^2B
\sin^2A-\sin^2B
Hence, proved.
Similar questions