Math, asked by suzab, 10 months ago

prove that sin square x + sin square (x+π/3)+sin square (x-π/3=3/2​

Answers

Answered by amitnrw
29

Answer:

Sin²x  + Sin²(x + π/3)  + Sin²(x - π/3) = 3/2

Step-by-step explanation:

Prove that sin square x + sin square (x+π/3)+sin square (x-π/3=3/2​

Sin²x  + Sin²(x + π/3)  + Sin²(x - π/3)

Using Sin(A + B) + SinACosB + CosASinB

& Sin(A - B) + SinACosB - CosASinB

=Sin²x  + (SinxCosπ/3 + CosxSinπ/3)²  +  (SinxCosπ/3 - CosxSinπ/3)²

using Cosπ/3 = 1/2   Sinπ/3 = √3/2

= Sin²x  + (Sinx/2 + Cosx√3/2)²  +  (Sinx/2 - Cosx√3/2)²

= Sin²x  + Sin²x/4 + 3Cos²x/4 + √3SinxCosx/2  + Sin²x/4 + 3Cos²x/4 -√3SinxCosx/2

= Sin²x  + Sin²x/4 + 3Cos²x/4 + Sin²x/4 + 3Cos²x/4

= 6Sin²x/4  + 6Cos²x/4

= 3Sin²x/2  + 3Cos²x/2

= (3/2) (Sin²x + Cos²x)

= 3/2

= RHS

QED

Proved

Sin²x  + Sin²(x + π/3)  + Sin²(x - π/3) = 3/2

Answered by Anonymous
4

Consider the provided information.

\sin^2A\cos^2B-\cos^2A\sin^2B=\sin^2A-\sin^2B

Consider the LHS.

\sin^2A\cos^2B-\cos^2A\sin^2B

\sin^2A(1-\sin^2B)-(1-\sin^2A)\sin^2B               (∴\cos^2x=1-\sin^2x)

\sin^2A-\sin^2A\sin^2B-\sin^2B+\sin^2A\sin^2B

\sin^2A-\sin^2B

Hence, proved.

Similar questions