prove that sin/tan+cosec=2+sin/tan-cosec
Answers
Answered by
0
cosec^2 51 = sin^2 51 = cos^2 39.
1/ cosec^2 51 +sin^2 39 = cos^2 39 +sin^2 39 = 1.
sec^2 39 = 1/ cos^2 39 = 1/ sin^2 51
sin^2 51* sec^2 39 = 1 .
1/ cosec^2 51 +sin^2 39 - 1 /sin^2 51* sec^2 39 = 0
Hence the given expression is tan^2 51 = ( cot 39) ^2 =( cosec 39/ sec 39)^2
(cosec 39) ^ 2 = x^2
(sec 39) ^2 = (1- x^2)
(tan 51) ^2 = x^ 2 / ( 1-x^2)
Hence the given expression is x^ 2 / ( 1-x^2)
1/ cosec^2 51 +sin^2 39 = cos^2 39 +sin^2 39 = 1.
sec^2 39 = 1/ cos^2 39 = 1/ sin^2 51
sin^2 51* sec^2 39 = 1 .
1/ cosec^2 51 +sin^2 39 - 1 /sin^2 51* sec^2 39 = 0
Hence the given expression is tan^2 51 = ( cot 39) ^2 =( cosec 39/ sec 39)^2
(cosec 39) ^ 2 = x^2
(sec 39) ^2 = (1- x^2)
(tan 51) ^2 = x^ 2 / ( 1-x^2)
Hence the given expression is x^ 2 / ( 1-x^2)
Similar questions