Math, asked by bawaprabh1742, 11 months ago

Prove that. Sin teta- costeta+1÷sinteta+costeta-1

Answers

Answered by ankitsunny
0

Step-by-step explanation:

please mark has brainliest answer please

Attachments:
Answered by jitumahi435
0

To prove that:

\dfrac{\sin \theta- \cos \theta+1}{\sin \theta+\cos \theta-1} =\dfrac{1}{\sec \theta-\tan \theta}.

Solution:

L.H.S. = \dfrac{\sin \theta- \cos \theta+1}{\sin \theta+\cos \theta-1}

On dividing numerator and denominator by \cos \theta, we get

= \dfrac{\tan \theta- 1+\sec \theta}{\tan \theta+ 1-\sec \theta} [ ∵ \tan \theta=\dfrac{\sin \theta}{\cos \theta} and \sec \theta =\dfrac{x}{ \cos \theta }]

= \dfrac{\sec \theta+\tan \theta- 1}{\tan \theta-\sec \theta+ 1}

= \dfrac{(\sec \theta+\tan \theta)- (\sec^2 \theta-\tan^2 \theta)}{\tan \theta-\sec \theta+ 1} [ ∵ 1 = \sec^2 \theta-\tan^2 \theta]

= \dfrac{(\sec \theta+\tan \theta)-(\sec \theta+\tan \theta)(\sec \theta-\tan \theta) }{\tan \theta-\sec \theta+ 1}

= \dfrac{(\sec \theta+\tan \theta)[1-(\sec \theta-\tan \theta)]}{(\tan \theta-\sec \theta+ 1)}

= \dfrac{(\sec \theta+\tan \theta)(1-\sec \theta+\tan \theta)}{(\tan \theta-\sec \theta+ 1)}

= \dfrac{(\sec \theta+\tan \theta)(\tan \theta-\sec \theta+ 1)}{(\tan \theta-\sec \theta+ 1)}

= \sec \theta+\tan \theta

R.H.S. = \dfrac{1}{\sec \theta-\tan \theta}

Rationalizing numerator and denominator, we get

= \dfrac{1}{\sec \theta-\tan \theta}\times \dfrac{\sec \theta+\tan \theta}{\sec \theta+\tan \theta}

Using the algebraic identity:

(a + b)(a - b) = a^{2} -b^{2}

= \dfrac{\sec \theta+\tan \theta}{\sec^2 \theta-\tan^2 \theta}

= \sec \theta+\tan \theta

∴ L.H.S. =R.H.S. = \sec \theta+\tan \theta, proved.

Thus, \dfrac{\sin \theta- \cos \theta+1}{\sin \theta+\cos \theta-1} =\dfrac{1}{\sec \theta-\tan \theta}, proved.

Similar questions