Prove that (sin theta)/(1+cos theta) + (1+cos theta)/(sin theta)= 2cosec theta
Answers
To Prove :
Solution :
In the given equation ,
First let us solve the LHS part ,
By taking LCM ,
using the identity ;
- (a+b)² = a² + b² + 2ab
We know that sin²θ + cos²θ = 1 ;
Taking 2 common in the numerator ;
Cancelling (1 + cosθ) ;
We know that ;
Answer:
To Prove :
\begin{gathered} \\ \bf \: \frac{sin\theta}{1 + cos \theta} + \frac{1 + cos \theta}{sin \theta} = 2cosec \theta \\ \\ \end{gathered}
1+cosθ
sinθ
+
sinθ
1+cosθ
=2cosecθ
Solution :
In the given equation ,
\bf{\dfrac{sin\theta}{1+cos\theta}+\dfrac{1+cos\theta}{sin\theta}=LHS}
1+cosθ
sinθ
+
sinθ
1+cosθ
=LHS
\bf{2cosec\theta=RHS}2cosecθ=RHS
First let us solve the LHS part ,
By taking LCM ,
\begin{gathered} \\ \longrightarrow \bf \: \frac{(sin \theta)(sin \theta) + (1 + cos \theta)(1 + cos \theta)}{(1 + cos \theta)(sin \theta)} \\ \\ \end{gathered}
⟶
(1+cosθ)(sinθ)
(sinθ)(sinθ)+(1+cosθ)(1+cosθ)
\begin{gathered} \\ \longrightarrow \bf \: \frac{ {sin}^{2} \theta + {(1 + cos \theta)}^{2} }{sin \theta(1 + cos \theta)} \\ \\ \end{gathered}
⟶
sinθ(1+cosθ)
sin
2
θ+(1+cosθ)
2
using the identity ;
(a+b)² = a² + b² + 2ab
\begin{gathered} \\ \longrightarrow \bf \frac{ {sin }^{2} \theta + 1 + {cos}^{2} \theta + 2(1)(cos \theta ) }{(1 + cos \theta)sin \theta} \\ \\ \end{gathered}
⟶
(1+cosθ)sinθ
sin
2
θ+1+cos
2
θ+2(1)(cosθ)
\begin{gathered} \\ \longrightarrow \bf \: \frac{ {sin}^{2} \theta + 1 + {cos}^{2} \theta + 2cos \theta }{(1 + cos \theta)sin \theta} \\ \\ \end{gathered}
⟶
(1+cosθ)sinθ
sin
2
θ+1+cos
2
θ+2cosθ
We know that sin²θ + cos²θ = 1 ;
\begin{gathered} \\ \longrightarrow \bf \: \frac{1 + 1 + 2cos \theta}{(1 + sin \theta)cos \theta} \\ \\ \end{gathered}
⟶
(1+sinθ)cosθ
1+1+2cosθ
\begin{gathered} \\ \longrightarrow \bf \: \frac{2 + 2cos \theta}{(1 + cos \theta)sin \theta} \\ \\ \end{gathered}
⟶
(1+cosθ)sinθ
2+2cosθ
Taking 2 common in the numerator ;
\begin{gathered} \\ \longrightarrow \bf \: \frac{2(1 + cos \theta)}{(1 + cos \theta)sin \theta} \\ \\ \end{gathered}
⟶
(1+cosθ)sinθ
2(1+cosθ)
Cancelling (1 + cosθ) ;
\begin{gathered} \\ \longrightarrow \bf \: \frac{2}{sin \theta} \end{gathered}
⟶
sinθ
2
\begin{gathered} \\ \longrightarrow \bf \: 2 \times \frac{1}{sin \theta} \end{gathered}
⟶2×
sinθ
1
We know that ;
\begin{gathered}\\ \bf{\dfrac{1}{sin\theta}=cosec\theta}\end{gathered}
sinθ
1
=cosecθ
\begin{gathered} \\ \longrightarrow \bf \: 2cosec \theta \\ \\ \end{gathered}
⟶2cosecθ
\begin{gathered} \\ \longrightarrow \bf RHS \\ \\ \end{gathered}
⟶RHS