Math, asked by nottamahsp, 1 year ago

Prove that sin theta +1-costheta /cos theta -1+sin theta =1+sin theta /cos theta

Answers

Answered by anamika17511
34

Answer:


Step-by-step explanation:


Attachments:
Answered by payalchatterje
3

Answer:

Here we want to prove,

 \frac{ \sin( \theta) + 1 -  \cos(\theta)  }{ \cos(\theta) - 1 +  \sin(\theta)  }  =  \frac{1 +  \sin(\theta) }{ \cos(\theta) }

So,

L.H.S,

 \frac{ \sin( \theta) + 1 -  \cos(\theta)  }{ \cos(\theta) - 1 +  \sin(\theta)  }  \\  =  \frac{( \sin( \theta) + 1 -  \cos(\theta) )(1 +  \sin(\theta) ) \cos(\theta)  }{ \cos(\theta) - 1 +  \sin(\theta)(1 +  \sin(\theta) ) \cos(\theta)  }

  =\frac{ \sin(\theta) \cos(\theta) +  \cos(\theta)  -  {cos}^{2} \theta(1 + sin\theta)  }{ \cos(\theta)  - 1 +  \sin(\theta) +  \cos(\theta)  \sin(\theta)  -  \sin(\theta)   +  {sin}^{2}\theta \cos(\theta)  }

 =  \frac{ \sin(\theta) \cos(\theta)  +  \cos(\theta) -  {cos}^{2}\theta(1 +  \sin(\theta) )   }{ \cos(\theta) +  \cos(\theta)  \sin(\theta)  - 1 +  {sin}^{2} \theta \cos(\theta)  }

 =  \frac{ [\sin( \theta) \cos(\theta) +  \cos(\theta)  -  {cos}^{2}\theta ] (1 +  \sin(\theta)    }{ [\sin(\theta) \cos(\theta)  +  \cos(\theta) -  {cos}^{2}\theta \ ] cos(\theta)    }

 =  \frac{1 +  \sin(\theta) }{ \cos(\theta) } = R.H.S

It is prove that L.H.S = R.H.S

Here applied formula,

 {sin}^{2} \theta +  {cos}^{2} \theta = 1

Some more important Trigonometry formulas,

sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

know more about Trigonometry,

https://brainly.in/question/8632966

https://brainly.in/question/11371684

Similar questions