Prove that sin theta - 2 sin ^3 theta / 2 cos ^3 theta - cos theta = tan theta.. guys please stop answering just for the sake of points...
Answers
Answered by
1
Answer: pls mark me as brainliest
Step-by-step explanation:
(Sinθ - 2Sin³θ) / ( 2Cos³θ - Cosθ) = Tanθ
LHS = (Sinθ - 2Sin³θ) / ( 2Cos³θ - Cosθ)
= Sinθ( 1 - 2Sin²θ) /Cosθ( 2Cos²θ - 1)
1 = Cos²θ + Sin²θ
= Sinθ( Cos²θ + Sin²θ - 2Sin²θ) /Cosθ( 2Cos²θ - ( Cos²θ + Sin²θ))
= Sinθ( Cos²θ - Sin²θ) /Cosθ( 2Cos²θ - Cos²θ - Sin²θ)
= Sinθ( Cos²θ - Sin²θ) /Cosθ( Cos²θ - Sin²θ)
Cancelling Cos²θ - Sin²θ from numerator & denominator
= Sinθ /Cosθ
= Tanθ
= RHS
QED
proved
(Sinθ - 2Sin³θ) / ( 2Cos³θ - Cosθ) = Tanθ
Learn More:
cosX-4sinx=1 then sinx+4cosx[tex] cos(x) - Brainly.in
brainly.in/question/8892362
prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx
Similar questions