Math, asked by Ambika7106, 6 months ago

Prove that: sin theta - cos theta + 1/ sin theta + cos theta - 1 = 1/ sec theta - tan theta using suitable identities




plzzzzzzzzzzz jldi batao

Answers

Answered by EnchantedGirl
18

\bigstar \underline{\underline{\sf To\ prove:-}}\\

  • \sf \frac{Sin\theta -cos\theta +1}{sin\theta +cos\theta -1}=\frac{1}{sec\theta - tan\theta}

\\

\bigstar \underline{\underline{\sf Proof:-}}\\

\\

Formulas used:-

\\

\leadsto \sf \frac{sin\theta }{cos\theta } =tan\theta\\

\leadsto \sf \frac{1}{cos\theta } =sec\theta \\

\leadsto \sf sec^2\theta -tan^2\theta =1\\

\leadsto \sf a^2 -b^2 =(a+b)(a-b)\\

-----------------------

LHS:

:\implies \sf \frac{ \sf sin\theta - cos\theta +1}{sin\theta +cos\theta -1}\\\\

Dividing numerator & denominator by cosθ:

:\implies \sf \frac{(sin\theta - cos\theta +1)/cos\theta}{(sin\theta +cos\theta -1)/cos\theta} \\\\

:\implies \sf \frac{(sin\theta /cos\theta-(cos\theta /cos\theta )+1/cos\theta}{(sin\theta /cos\theta ) +(cos\theta /cos\theta )-1/cos\theta } \\\\

:\implies \sf \frac{tan\theta -1 +sec\theta }{tan\theta +1-sec\theta } \\\\

:\implies \sf \frac{tan\theta +sec\theta -1}{tan\theta -sec\theta +(sec^2\theta - tan^2\theta )} \\\\

:\implies \sf \frac{tan\theta +sec\theta -1}{(tan\theta -sec\theta )+(sec\theta -tan\theta )(sec\theta +tan\theta )} \\\\

:\implies \sf \frac{\cancel{tan\theta +sec\theta -1}}{sec\theta -tan\theta \cancel{-1+sec\theta +tan\theta }} \\\\

:\implies \bold{\sf \frac{1}{sec\theta tan\theta }}\\\\

Therefore,

\mapsto \boxed{\boxed{\sf \frac{sin\theta - cos\theta + 1}{sin\theta + cos\theta - 1}= \frac{1}{sec\theta - tan\theta } }}\\\\

Hence proved.

-----------------------------

HOPE IT HELPS!

Answered by Anonymous
0

\bigstar \underline{\underline{\sf To\ prove:-}}\\

\sf \frac{Sin\theta -cos\theta +1}{sin\theta +cos\theta -1}=\frac{1}{sec\theta - tan\theta}

\\

\bigstar \underline{\underline{\sf Proof:-}}\\

\\

Formulas used:-

\\

\leadsto \sf \frac{sin\theta }{cos\theta } =tan\theta\\

\leadsto \sf \frac{1}{cos\theta } =sec\theta \\

\leadsto \sf sec^2\theta -tan^2\theta =1\\

\leadsto \sf a^2 -b^2 =(a+b)(a-b)\\

-----------------------

LHS:

:\implies \sf \frac{ \sf sin\theta - cos\theta +1}{sin\theta +cos\theta -1}\\\\

Dividing numerator & denominator by cosθ:

:\implies \sf \frac{(sin\theta - cos\theta +1)/cos\theta}{(sin\theta +cos\theta -1)/cos\theta} \\\\

:\implies \sf \frac{(sin\theta /cos\theta-(cos\theta /cos\theta )+1/cos\theta}{(sin\theta /cos\theta ) +(cos\theta /cos\theta )-1/cos\theta } \\\\

:\implies \sf \frac{tan\theta -1 +sec\theta }{tan\theta +1-sec\theta } \\\\

:\implies \sf \frac{tan\theta +sec\theta -1}{tan\theta -sec\theta +(sec^2\theta - tan^2\theta )} \\\\

:\implies \sf \frac{tan\theta +sec\theta -1}{(tan\theta -sec\theta )+(sec\theta -tan\theta )(sec\theta +tan\theta )} \\\\

:\implies \sf \frac{\cancel{tan\theta +sec\theta -1}}{sec\theta -tan\theta \cancel{-1+sec\theta +tan\theta }} \\\\

:\implies \bold{\sf \frac{1}{sec\theta tan\theta }}\\\\

Therefore,

\mapsto \boxed{\boxed{\sf \frac{sin\theta - cos\theta + 1}{sin\theta + cos\theta - 1}= \frac{1}{sec\theta - tan\theta } }}\\\\

Hence proved.

-----------------------------

HOPE IT HELPS!

Similar questions