prove that sin theta - cos theta +1/sn theta +cos theta - 1 = 1/sec theta - tan theta
Answers
Answered by
0
nswer
Consider the L.H.S
sinθ+cosθ−1
sinθ−cosθ+1
=( lsinθ+cosθ−1sinθ−cosθ+1)×( sinθ+cosθ+1sinθ+cosθ+1)
=(sinθ+cosθ−1sinθ+1−cosθ)×(sinθ+cosθ+1sinθ+1+cos)
= (sinθ+cosθ) 2−1
2(sinθ+1) 2−cos2θ
= sin2θ+cos2θ+2sinθcosθ−1sin 2θ+1+2sinθ−cos 2θ
Since, sin2θ+cos2θ=1
Therefore,= 1+2sinθcosθ−1
1−cos 2θ+1+2sinθ−cos2θ
= 2sinθcosθ2−2cos 2θ+2sinθ
= sinθcosθ1−cos 2θ+sinθ
= sinθcosθsin 2θ+sinθ
=cosθsinθ+1
= cosθ+cosθsinθ
=secθ+tanθ
=(secθ+tanθ)×(secθ−tanθsecθ−tanθ)
= secθ−tanθsec 2θ−tan 2θ
We know that
sec 2θ−tan2θ=1
Therefore,
= secθ−tanθ1
Hence, proved
Similar questions