Prove that sin theta +cos theta /sin theta - cos theta +sin theta - cos theta /sin theta +cos theta =2sec²theta /tan²theta - 1
Answers
TO PROVE :–
\begin{gathered} \\ \bf \implies \dfrac{\sin \theta + \cos \theta}{ \sin \theta - \cos\theta} + \dfrac{\sin \theta - \cos\theta}{ \sin \theta + \cos\theta}= \dfrac{2 \sec ^{2} \theta}{ \tan^{2} \theta - 1} \\ \end{gathered}
⟹
sinθ−cosθ
sinθ+cosθ
+
sinθ+cosθ
sinθ−cosθ
=
tan
2
θ−1
2sec
2
θ
SOLUTION :–
• Let's take L.H.S. –
\begin{gathered} \\ \bf \: \: = \: \: \dfrac{\sin \theta + \cos \theta}{ \sin \theta - \cos\theta} + \dfrac{\sin \theta - \cos\theta}{ \sin \theta + \cos\theta}\\ \end{gathered}
=
sinθ−cosθ
sinθ+cosθ
+
sinθ+cosθ
sinθ−cosθ
\begin{gathered} \\ \bf \: \: = \: \: \dfrac{(\sin \theta + \cos \theta)^{2} +(\sin \theta - \cos\theta)^{2} }{(\sin \theta - \cos\theta)(\sin \theta + \cos\theta)} \\ \end{gathered}
=
(sinθ−cosθ)(sinθ+cosθ)
(sinθ+cosθ)
2
+(sinθ−cosθ)
2
\begin{gathered} \\ \bf \: \: = \: \: \dfrac{(\sin^{2} \theta + \cos^{2} \theta + 2\sin \theta \cos\theta) +(\sin^{2} \theta + \cos^{2} \theta - 2\sin \theta \cos\theta)}{(\sin \theta - \cos\theta)(\sin \theta + \cos\theta)} \\ \end{gathered}
=
(sinθ−cosθ)(sinθ+cosθ)
(sin
2
θ+cos
2
θ+2sinθcosθ)+(sin
2
θ+cos
2
θ−2sinθcosθ)
=
(sin
2
θ−cos
2
θ)
(sin
2
θ+cos
2
θ+2sinθcosθ)+(sin
2
hence proved