Math, asked by rachitsingh6026, 4 months ago

Prove that
Sin theta + Cos theta / Sin theta - Cos theta + Sin theta - Cos theta/Sin theta + Cos theta = 2Sec²theta/Tan²theta - 1

Answers

Answered by BrainlyPopularman
235

TO PROVE :

  \\ \bf \implies  \dfrac{\sin \theta + \cos  \theta}{ \sin \theta - \cos\theta} + \dfrac{\sin \theta  - \cos\theta}{ \sin \theta  + \cos\theta}=  \dfrac{2 \sec ^{2}  \theta}{ \tan^{2} \theta - 1} \\

SOLUTION :

• Let's take L.H.S. –

  \\ \bf \:  \: =  \:  \: \dfrac{\sin \theta + \cos  \theta}{ \sin \theta - \cos\theta} + \dfrac{\sin \theta  - \cos\theta}{ \sin \theta  + \cos\theta}\\

  \\ \bf \:  \: =  \:  \: \dfrac{(\sin \theta + \cos  \theta)^{2} +(\sin \theta - \cos\theta)^{2} }{(\sin \theta - \cos\theta)(\sin \theta  + \cos\theta)} \\

  \\ \bf \:  \: =  \:  \: \dfrac{(\sin^{2}  \theta + \cos^{2} \theta + 2\sin \theta \cos\theta) +(\sin^{2}  \theta + \cos^{2} \theta  -  2\sin \theta \cos\theta)}{(\sin \theta - \cos\theta)(\sin \theta  + \cos\theta)} \\

  \\ \bf \:  \: =  \:  \: \dfrac{(\sin^{2}  \theta + \cos^{2} \theta + 2\sin \theta \cos\theta) +(\sin^{2}  \theta + \cos^{2} \theta  -  2\sin \theta \cos\theta)}{(\sin  ^{2} \theta - \cos^{2} \theta)} \\

  \\ \bf \:  \: =  \:  \: \dfrac{\sin^{2}  \theta + \cos^{2} \theta + 2\sin \theta \cos\theta+\sin^{2}  \theta + \cos^{2} \theta  -  2\sin \theta \cos\theta}{\sin  ^{2} \theta - \cos^{2} \theta} \\

  \\ \bf \:  \: =  \:  \: \dfrac{2\sin^{2}  \theta +2\cos^{2} \theta + 2\sin \theta \cos\theta-  2\sin \theta \cos\theta}{\sin  ^{2} \theta - \cos^{2} \theta} \\

  \\ \bf \:  \: =  \:  \: \dfrac{2\sin^{2}  \theta +2\cos^{2} \theta}{\sin  ^{2} \theta - \cos^{2} \theta} \\

  \\ \bf \:  \: =  \:  \: \dfrac{2(\sin^{2}  \theta +\cos^{2} \theta)}{\sin  ^{2} \theta - \cos^{2} \theta} \\

  \\ \bf \:  \: =  \:  \: \dfrac{2(1)}{\sin  ^{2} \theta - \cos^{2} \theta} \\

  \\ \bf \:  \: =  \:  \: \dfrac{2}{\sin  ^{2} \theta - \cos^{2} \theta} \\

  \\ \bf \:  \: =  \:  \: \dfrac{ \dfrac{2}{\cos^{2} \theta}}{ \dfrac{\sin^{2} \theta - \cos^{2} \theta}{\cos^{2} \theta}} \\

  \\ \bf \:  \: =  \:  \: \dfrac{ \dfrac{2}{\cos^{2} \theta}}{ \dfrac{\sin^{2} \theta}{\cos^{2} \theta} -  \dfrac{\cos^{2} \theta}{\cos^{2} \theta} } \\

  \\ \bf \:  \: =  \:  \: \dfrac{2\sec^{2} \theta}{ \tan^{2} \theta-  1} \\

  \\ \bf \:  \: =  \:  \: R.H.S.\\

  \\ \bf \longrightarrow   \:  \:  \green{\underbrace{ \red{Hence \:  \: Proved}}}\\


Anonymous: Nice!!
Anonymous: Hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii @BrainlyPopularman❤️
ItzArchimedes: Awesome !
Anonymous: Good ! ^^
targotrakiran60050: thanks
Anonymous: Nice !!
Anonymous: Kanpeki
xzxy: itna jyada typing krne ka power omg!!
BrainlyPopularman: Thanks all of you
Answered by Anonymous
115

\sf{Answer}

Step by step explanation:-

We have to prove that LHS=RHS

So, LHS is not in simplest that means we can simplify and we can convert interms of RHS

So,take LHS and simplify

LHS= \sf\dfrac{sinθ+cosθ}{sinθ-cosθ} +\sf\dfrac{sinθ-cosθ}{sinθ+cosθ}

Taking LCM for denominators

\sf\dfrac{(sinθ+cosθ)²+(sinθ-cosθ)²}{(sinθ-cosθ)(sinθ+cosθ)}

Numerator it is in form of

(a+b)² +(a-b)² = 2a²+2b²

Denominator in form of

(a+b)(a-b) = a²-b²

Similarily by using this identity we can simplify

\sf\dfrac{2sin²θ+2cos²θ}{sin²θ-cos²θ}

\sf\dfrac{2(sin²θ+cos²θ)}{sin²θ-cos²θ}

We know that

sin²θ+cos²θ = 1

\sf\dfrac{2(1)}{sin²θ-cos²θ}

Divide the denominator and numerator with cos²θ because in RHS tan²θ is there

\sf\dfrac{2}{ sin²θ/cos²θ -cos²θ/cos²θ}

We know that

sin²θ/cos²θ = tan²θ

\sf\dfrac{2/cos²θ}{tan²θ -1}

\sf\dfrac{2sec²θ}{tan²θ -1}

Hence proved

LHS = RHS

Hope my answer helps to u

Thank u :)


itzHitman: Well done
Anonymous: Tq :)
Aminaatan: hi,dear what's mean by Tq
targotrakiran60050: di apne bhi acha kiya par not too good sorry ha
vijaykumarsonkar30: Outstanding!!
Anonymous: Extraordinary Simple answer &Nice explanation
Anonymous: Extraordinary Simple answer &Nice explanation
Anonymous: Nyc !
Anonymous: Thank uh :)
xzxy: fan of samantha?
Similar questions