Physics, asked by pratikshathakare2006, 1 month ago

prove that sin theta - cos theta = sin theta tan theta
please answer ​

Answers

Answered by sarbjeetkaurk035
0

Answer:

L.H.S

=

sinθ+cosθ−1

sinθ−cosθ+1

=

tanθ−secθ+1

tanθ+secθ−1

=

tanθ−secθ+1

(tanθ+secθ)−(sec

2

θ−tan

2

θ)

=

tanθ−secθ+1

(tanθ+secθ)−(secθ−tanθ)(secθ+tanθ)

=

(1−secθ+tanθ)

(tanθ+secθ)(1−secθ+tanθ)

=secθ+tanθ

Congugate multiplying by secθ−tanθ

=

secθ−tanθ

sec

2

θ−tan

2

θ

=

secθ−tanθ

1

Explanation:

L.H.S

=

sinθ+cosθ−1

sinθ−cosθ+1

=

tanθ−secθ+1

tanθ+secθ−1

=

tanθ−secθ+1

(tanθ+secθ)−(sec

2

θ−tan

2

θ)

=

tanθ−secθ+1

(tanθ+secθ)−(secθ−tanθ)(secθ+tanθ)

=

(1−secθ+tanθ)

(tanθ+secθ)(1−secθ+tanθ)

=secθ+tanθ

Congugate multiplying by secθ−tanθ

=

secθ−tanθ

sec

2

θ−tan

2

θ

=

secθ−tanθ

1

Similar questions