Math, asked by judescah9005, 1 year ago

Prove that sin theta + cos theta upon sin theta minus cos theta + sin theta minus cos theta sin theta + cos theta equals to 2 sin squared theta minus cos squared theta equals to 2 upon 2 sin squared theta minus one

Answers

Answered by somi173
58

The question is

" Prove that sin theta + cos theta upon sin theta minus cos theta + sin theta minus cos theta sin theta + cos theta equals to 2 sin squared theta minus cos squared theta equals to 2 upon 2 sin squared theta minus one"

Explanation:

\frac{sin\theta+cos\theta}{sin\theta-cos\theta}+\frac{sin\theta-cos\theta}{sin\theta+cos\theta}\\\\=\frac{(sin\theta+cos\theta)^{2}+(sin\theta-cos\theta)^{2}}{(sin\theta-cos\theta)(sin\theta+cos\theta)}\\\\\\=\frac{sin^{2}\theta+cos^{2}\theta+2sin\theta.cos\theta+sin^{2}\theta+cos^{2}\theta-2sin\theta.cos\theta }{sin^{2}\theta-cos^{2}\theta}

=\frac{sin^{2}\theta+cos^{2}\theta+2sin\theta.cos\theta+sin^{2}\theta+cos^{2}\theta-2sin\theta.cos\theta }{sin^{2}\theta-cos^{2}\theta} \\\\=\frac{(sin^{2}\theta+cos^{2}\theta)+(sin^{2}\theta+cos^{2}\theta)}{sin^{2}\theta-(1-sin^{2}\theta)} \\\\=\frac{1+1}{sin^{2}\theta-1+sin^{2}\theta}\\\\=\frac{2}{2sin^{2}\theta-1}

Which is the required answer.

Answered by sridharreddyboyini
1

Step-by-step explanation:

Please mark me as a brainliest

Attachments:
Similar questions