Math, asked by dhanushsingara, 17 days ago

prove that (sin theta+cosec theta)2 + (cos theta +sec theta)2 - (tan theta +cot theta)=5

Answers

Answered by vikkiain
2

right \:  \:  question :  \\ (sin  \theta+cosec  \theta)^{2}  + (cos  \theta +sec  \theta)^{2} - (tan  \theta +cot  \theta) \boxed{^{2}}=5 \\ \boxed{^{2} }\:  \:  is \:  \: missing\:\:in \:\:your \:\:question

Step-by-step explanation:

LHS=(sin \theta+cosec \theta)^{2}  + (cos \theta +sec  \theta)^{2} - (tan  \theta +cot  \theta)^{2} \\ =  (sin^{2} \theta + cosec^{2} \theta + 2.sin \theta.cosec \theta) + (cos^{2} \theta + sec^{2} \theta + 2.cos \theta.sec \theta) - (tan^{2} \theta + cot^{2} \theta + 2.tan \theta.cot \theta) \\  = sin^{2} \theta + cosec^{2} \theta + 2 + cos^{2} \theta + sec^{2} \theta + 2- tan^{2} \theta  -  cot^{2} \theta  - 2 \\ = ( sin^{2} \theta + cos^{2} \theta) + (sec^{2} \theta - tan^{2} \theta) + (cosec^{2} \theta - cot^{2} \theta) + (2 + 2 - 2) \\ =  \:  1 + 1 + 1 + 2 + 2 - 2 \\  =  \: \boxed{ 5}

Similar questions