Math, asked by rohit51791, 11 months ago

prove that sin theta + cosec theta ÷ sin theta = 2+cot square theta

Answers

Answered by horrorhunter
24
HOPE THIS WILL HELP YOU
Attachments:
Answered by ashishks1912
6

GIVEN :

The trignometric equation is \frac{sin\theta+cosec\theta}{sin\theta}=2+cot^2\theta

TO PROVE :

The given equation \frac{sin\theta+cosec\theta}{sin\theta}=2+cot^2\theta is true

SOLUTION :

To prove that LHS=RHS

From the given equation take LHS

\frac{sin\theta+cosec\theta}{sin\theta}

By using the trignometric identity :

cosecx=\frac{1}{sinx}

=\frac{sin\theta+\frac{1}{sin\theta}}{sin\theta}

=\frac{sin\theta}{sin\theta}+\frac{1}{sin\theta\times sin\theta}

=1+\frac{1}{sin^2\theta}

=\frac{sin^2\theta+1}{sin^2\theta}

By using the trignometric identity :

sin^2x+cos^2x=1

=\frac{sin^2\theta+(sin^2\theta+cos^2\theta)}{sin^2\theta}

=\frac{sin^2\theta+sin^2\theta+cos^2\theta}{sin^2\theta}

=\frac{2sin^2\theta+cos^2\theta}{sin^2\theta}

=\frac{2sin^2\theta}{sin^2\theta}+\frac{cos^2\theta}{sin^2\theta}

By using the trignometric identity :

cotx=\frac{cosx}{sinx}

=2+cot^2\theta=RHS

Hence LHS = RHS

∴ The given equation \frac{sin\theta+cosec\theta}{sin\theta}=2+cot^2\theta is true

Hence proved.

Similar questions