prove that sin theta minus 2 Sin cube theta divided by 2 cos cube theta minus cos theta is equals to tan theta
Answers
Answered by
1
hence proved............
Attachments:
Answered by
0
⇒sinФ-2sin∧3Ф/2cos∧3Ф-cosФ=tanФ
Let"s Start
take sinФ and cosФ common
=sinФ(1-2sin∧2Ф)/cosФ(2cos∧2Ф-1)
We know that sin∧2Ф=1-cos∧2Ф
=sinФ(1-2(1-cos∧2Ф))/cosФ(2cos∧2Ф-1)
=sinФ(1-2+2cos∧2Ф)/cosФ(2cos∧Ф-1)
=sinФ(-1+2cos∧2Ф)/cosФ(2cos∧2Ф-1)
=sinФ(2cos∧2Ф-1)/cosФ(2cos∧2Ф-1)
Cancel (2cos∧2Ф-1)
=sinФ/cosФ
=tanФ
⇒LHS=RHS
Similar questions
Biology,
7 months ago
Math,
7 months ago
Economy,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago