Math, asked by vvs40, 1 year ago

prove that sin theta minus 2 Sin cube theta divided by 2 cos cube theta minus cos theta is equals to tan theta​

Answers

Answered by NeelamG
1

hence proved............

Attachments:
Answered by alexanderandnapolean
0

⇒sinФ-2sin∧3Ф/2cos∧3Ф-cosФ=tanФ

Let"s Start

take sinФ and cosФ common

=sinФ(1-2sin∧2Ф)/cosФ(2cos∧2Ф-1)

We know that sin∧2Ф=1-cos∧2Ф

=sinФ(1-2(1-cos∧2Ф))/cosФ(2cos∧2Ф-1)

=sinФ(1-2+2cos∧2Ф)/cosФ(2cos∧Ф-1)

=sinФ(-1+2cos∧2Ф)/cosФ(2cos∧2Ф-1)

=sinФ(2cos∧2Ф-1)/cosФ(2cos∧2Ф-1)

Cancel (2cos∧2Ф-1)

=sinФ/cosФ

=tanФ

⇒LHS=RHS

Similar questions