Math, asked by gaurisuraj200640, 3 months ago

Prove that sin theta minus cos theta plus 1 divided by sin theta plus cos theta minus 1= 1+sin theta divided by cos theta ​

Answers

Answered by kahitij01
0

Step-by-step explanation:

Giventhat,

cosθ+sinθ−1

cosθ−sinθ+1

=cosecθ+cotθ

Now,

DividebothN

r

andD

r

withsinθ

=

sinθ

cosθ+sinθ−1

sinθ

cosθ−sinθ+1

=

cotθ+1−cosecθ

cotθ−1+cosecθ

=

cotθ−cosecθ+1

cotθ+cosecθ−(cosec

2

θ−cot

2

θ)

=

cotθ−cosecθ+1

cotθ+cosecθ−cosec

2

θ+cot

2

θ

=

cotθ−cosecθ+1

cotθ+cosecθ(1−(cosec

2

θ−cot

2

θ))

=cotθ+cosecθ

HenceL.H.S=R.H.S

Similar questions