Prove that sin theta minus cos theta plus 1 divided by sin theta plus cos theta minus 1= 1+sin theta divided by cos theta
Answers
Answered by
0
Step-by-step explanation:
Giventhat,
cosθ+sinθ−1
cosθ−sinθ+1
=cosecθ+cotθ
Now,
DividebothN
r
andD
r
withsinθ
=
sinθ
cosθ+sinθ−1
sinθ
cosθ−sinθ+1
=
cotθ+1−cosecθ
cotθ−1+cosecθ
=
cotθ−cosecθ+1
cotθ+cosecθ−(cosec
2
θ−cot
2
θ)
=
cotθ−cosecθ+1
cotθ+cosecθ−cosec
2
θ+cot
2
θ
=
cotθ−cosecθ+1
cotθ+cosecθ(1−(cosec
2
θ−cot
2
θ))
=cotθ+cosecθ
HenceL.H.S=R.H.S
Similar questions
English,
1 month ago
World Languages,
1 month ago
Science,
1 month ago
Computer Science,
3 months ago
English,
10 months ago
English,
10 months ago