Math, asked by renuka312, 1 year ago

prove that sin theta minus cos theta plus 1 ➗sin theta plus cos theta minus 1 is equal to 1 divided by sec theta minus tan theta

Answers

Answered by Sarangabhavani
4

I hope this helps you

Attachments:
Answered by mysticd
2

 LHS = \frac{sin \theta -cos \theta + 1 }{sin \theta + cos \theta - 1 }

 Divide\: numerator \:and \:denominator \:by \\cos \theta ,we \:get

 =  \frac{\frac{(sin \theta -cos \theta + 1 )}{cos \theta</p><p>}}{\frac{sin \theta + cos \theta - 1 }{cos \theta}}

 = \frac{ tan \theta - 1 + sec \theta }{ tan \theta + 1 - sec \theta }

 = \frac{ tan \theta  +sec \theta - 1  }{ (tan \theta - sec \theta)+(sec^{2} \theta - tan^{2} \theta) }

 \blue { ( By \: Trigonometric \:Identity )}

 \boxed {\pink { sec^{2} \theta - tan^{2} \theta = 1 }}

 = \frac{ tan \theta  +sec \theta - 1  }{-1 (sec \theta - tan\theta)+(sec \theta + tan \theta )(sec\theta- tan \theta )}

 = \frac{ tan \theta  +sec \theta - 1  }{ (sec \theta - tan \theta)(-1+sec \theta + tan \theta )}

/* After cancellation , we get */

 = \frac{1}{sec\theta - tan \theta ) } \\= RHs

 Hence \:proved.

•••♪

•••♪

Similar questions