Math, asked by cpsharma5407, 1 year ago

Prove that sin theta minus cos theta plus one upon sin theta + cos theta minus one is equals to one upon sec theta minus 10 theta

Answers

Answered by pinquancaro
365

To prove:\frac{(\sin \theta - \cos \theta +1 )}{(\sin \theta +\cos \theta -1)} = \frac{1}{\sec \theta - \tan \theta}

Now, dividing numerator and denominator by \cos \theta

we get,

= \frac{(\tan \theta -1 + \sec \theta )}{(\tan \theta +1 - \sec \theta)}

= \frac{(\tan \theta+ \sec \theta-1)}{(\tan \theta - \sec \theta+1)}

Using the trigonometric identity, \sec^2 \theta- \tan^2 \theta = 1

= \frac{(\tan \theta+\sec \theta)-(\sec^2 \theta - \tan^2 \theta)}{\tan \theta -\sec \theta+1}

= \frac{(\tan \theta+\sec \theta)-(\sec \theta - \tan \theta)(\sec \theta + \tan \theta)}{\tan \theta -\sec \theta+1}

= \frac{(\tan \theta+\sec \theta)[1-(\sec \theta - \tan \theta)}{\tan \theta -\sec \theta+1}

= \tan \theta + \sec \theta

= \frac{(\tan \theta + \sec \theta) (\sec \theta - \tan \theta)}{\sec \theta - \tan \theta}

= \frac{ (\sec^2 \theta - \tan^2 \theta)}{\sec \theta - \tan \theta}

= \frac{1}{\sec \theta - \tan \theta}

= RHS

Hence, proved.

Answered by ashokchauhan1969
23

Answer:

The answer is given with the explanation of steps also {why we took that steps}

Attachments:
Similar questions