Math, asked by dillu48, 1 year ago

prove that sin theta minus cos theta upon sin theta + cos theta + sin theta + cos theta upon sin theta minus cos theta is equal to 2 upon sin squared theta minus one


Likesmm: It is 2uponsin square theta or 2upon 2sin square theta

Answers

Answered by Likesmm
11

Answer:this is coming

Step-by-step explanation:

Attachments:
Answered by Anonymous
3

The correct question is

Prove that

\frac{sin\alpha- cos\alpha  }{sin\alpha + cos\alpha } + \frac{sin\alpha + cos\alpha  }{sin\alpha - cos\alpha } = \frac{2}{2sin^{2}\alpha -1 }

(Note : Representing theta as angle \alpha )

Solution:

We have to prove that

     \frac{sin\alpha- cos\alpha  }{sin\alpha + cos\alpha } + \frac{sin\alpha + cos\alpha  }{sin\alpha - cos\alpha } = \frac{2}{2sin^{2}\alpha -1 }

  • We have, the trigonometric equation:

      \frac{sin\alpha- cos\alpha  }{sin\alpha + cos\alpha } + \frac{sin\alpha + cos\alpha  }{sin\alpha - cos\alpha } = \frac{2}{2sin^{2}\alpha -1 }

  • Solving LHS :

        \frac{sin\alpha- cos\alpha  }{sin\alpha + cos\alpha } + \frac{sin\alpha + cos\alpha  }{sin\alpha - cos\alpha }

  • Rationalizing both the terms that is multiplying and dividing both the terms by (sin\alpha - cos\alpha ) and (sin\alpha + cos\alpha) respectively, we get

=\frac{sin\alpha- cos\alpha  }{sin\alpha + cos\alpha } (\frac{sin\alpha - cos\alpha }{sin\alpha - cos\alpha}) + \frac{sin\alpha + cos\alpha  }{sin\alpha - cos\alpha }(\frac{sin\alpha + cos\alpha}{sin\alpha + cos\alpha})

=\frac{(sin\alpha - cos\alpha  )^{2} }{sin^{2}\alpha - cos^{2} \alpha  } + \frac{(sin\alpha +cos\alpha )^{2} }{sin^{2}\alpha - cos^{2} \alpha }

=\frac{(sin\alpha - cos\alpha  )^{2} + (sin\alpha + cos\alpha )^{2} }{sin^{2}\alpha - cos^{2} \alpha  }

=\frac{sin\alpha^2 + cos\alpha^2-2sin\alpha cos\alpha  + sin\alpha^2 + cos\alpha ^2+2sin\alpha cos\alpha    }{sin^{2}\alpha - cos^{2} \alpha  }

=\frac{2sin\alpha^2 + 2cos\alpha^2 }{sin^{2}\alpha - cos^{2} \alpha  }

=\frac{2(sin\alpha^2 + cos\alpha^2) }{sin^{2}\alpha - cos^{2} \alpha  }\\

  • Using the identity

sin^2\alpha +cos^2\alpha = 1, we get

=\frac{2 }{sin^{2}\alpha - cos^{2} \alpha  }

  • Using the identity

cos^2\alpha = 1- sin^2\alpha, we get

=\frac{2 }{sin^{2}\alpha - (1-sin^{2} \alpha ) }\\=\frac{2 }{sin^{2}\alpha - 1 + sin^{2} \alpha  }\\

=\frac{2}{2sin^2\alpha -1}\\

= RHS

  therefore

\frac{sin\alpha- cos\alpha  }{sin\alpha + cos\alpha } + \frac{sin\alpha + cos\alpha  }{sin\alpha - cos\alpha } = \frac{2}{2sin^{2}\alpha -1 }, hence proved.

Similar questions