Prove that sin(theta+phi)/sin theta.cos phi= cot theta tan phi +1
Answers
Answered by
4
Prove that sin(x+y)/sin x.cos y= cotx tany+1 (in better form)
Given:
sin(x+y)/sin x.cos y
To prove:
sin(x+y)/sin x.cos y= cotx tany+1
Proof:
Let us take the LHS of the given equation:
- sin(x+y)/sin x.cos y
We have the formula of
sin(x+y) = sin x.cos y + sin y.cos x
Putting this in the equation;
- sin x.cos y + sin y.cos x/sin x.cos y
Distribute the Denominator
- sin x.cos y/sin x.cos y + sin y.cos x/sin x.cos y
- 1+ sin y.cos x/cos y.sin x
- 1 + tany.cotx
sin(x+y)/sin x.cos y= cotx tany+1
Henve proved.
Similar questions