Math, asked by namdevkrrish, 2 months ago

prove that sin theta upon (1-cos theta )= cosec theta + cot theta​

Answers

Answered by TheBrainlyStar00001
214

 \\ \mathcal{\large{\underline {★ \: \: QUESTION\:\:}}} : - \begin{cases} \sf { \underbrace{ \overbrace{ \bf{Prove: - } \: \: \tt{ \dfrac{sin \:  \theta}{1 - cos \:  \theta}   = cosec  \: \theta  \: + \:  cot  \: \theta}}}} \end{cases} \\\\\\

____________________________

\\ \\\huge \underline{ \underline{ {   \cal \: {★S}} \large \red{ \tt \: O} \green{ \tt \: L} \blue{ \tt \: U} \orange{  \tt \: T} \purple{ \tt \: I} \red{ \tt \: O} \blue{ \tt \: N}:-}} \\\\

 \large {\underbrace{ \underline { \frak { \dag \:\:Finding \: \:  \:  \:  \:  L. \: H . \: S,}}}}\\\\

 \\   \implies \sf \dfrac{sin \:  \theta}{1 -   \: cos \:  \theta} \\\\

\large \underbrace{ \underline { \frak { \dag \:  \: multiply \: numerator \: and \: dinominator \: by \:   \red{\sf(1 + cos \:  \theta).}}}}\\\\

 :   \implies \tt \dfrac{sin \:  \theta \: (1  + cos \:  \theta)}{ (1  -  cos \:  \theta )(1 + cos \:  \theta )}  \\\\\  :   \implies \tt \dfrac{sin \:  \theta \: (1  + cos \:  \theta)}{ 1  -  cos  \: {}^{2}  \: \theta }  \\\\\ :   \implies \tt  \dfrac{sin \:  \theta \: (1  + cos \:  \theta)}{ sin  \: {}^{2}  \: \theta }  \\\\\ :   \implies \tt  \dfrac{1  + cos \:  \theta}{ sin  \:   \: \theta }  \\\\\ :   \implies \tt  \dfrac{1 }{ sin  \:   \: \theta } +  \frac{cos \:  \theta}{sin \:  \theta}    \\\\\  :\longmapsto \bf{cosec \:  \theta \:   +  \: cot \:  \theta \:  =  R.H.S}\\\\

☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯☯

\\ \\\:\: \therefore \:  \:    \boxed{\large{\cal{LHS = RHS}}} \\  \\  \\  \large \tt\underline{ \underline{\overline{\overline{\mid{\mid{\red{ \lgroup Hence \: proved!! \rgroup}\mid}\mid}}}}}

\\\\

★ Hope it helps u ★

Similar questions