prove that sin theta upon 1 minus cos theta equal to 1 + cos theta upon sin
Answers
Answered by
1
Step-by-step explanation:
We have,
LHS =
1+cosθ
sinθ
+
sinθ
1+cosθ
⇒ LHS =
sinθ(1+cosθ)
sin
2
θ+(1+cosθ)
2
⇒ LHS =
sinθ(1+cosθ)
sin
2
θ+1+2cosθ+cos
2
θ
⇒ LHS =
sinθ(1+cosθ)
(sin
2
θ+cos
2
θ)+1+2cosθ
[∵sin
2
θ+cos
2
θ=1]
⇒ LHS =
sinθ(1+cosθ)
2+2cosθ
=
sinθ(1+cosθ)
2(1+cosθ)
=
sinθ
2
=2cosecθ=RHS
Similar questions