Math, asked by chilukurilakshmidevi, 5 months ago

prove that sin thetha - cos thetha/sin thetha +sin thetha + cos thetha / sin thetha - cos thetha = 2/2 sin square thetha -1 ​

Answers

Answered by Anonymous
96

Answer:

\huge\mathcal{\green{Hola!}}

Step-by-step explanation:

To prove:-

 (\frac{sin \: x \:  - cos \: x}{ \: sin \: x  + cos \: x} ) + ( \frac{sin \: x + cos \: x}{sin \: x -  \: cos \: x} ) =  \frac{2}{2 \:  {sin}^{2} x - 1}

Trigonometric identities:-

 {sin}^{2} x +  {cos}^{2} x = 1

 {sec}^{2} x -  {tan}^{2} x = 1

 {cosec}^{2} x - 1 =  {cot}^{2} x

Required Solution:-

・➝ L.H.S

( \frac{sin \: x - cos \: x}{sin \: x +  \: cos \: x} ) +  (\frac{sin \: x +  \: cos \: x}{sin \: x -  \: cos \: x} )

・➝ Taking their LCM we have;

 \frac{(sin \: x -  \: cos \: x)(sin \: x -  \: cos \: x) + (sin \: x + cos \: x)(sin \: x + cos \: x)}{(sin \: x + cos \: x)(sin \: x - cos \: x)}

[ because (a+b)(a-b) = a^2 - b^2 ]

 \frac{ {(sin \: x - cos \: x) }^{2}  +  {(sin \: x +  \: cos \: x)}^{2} }{ {sin}^{2}x \:  -  {cos}^{2} x }

 \frac{( {sin}^{2} x  +  {cos}^{2}x - 2sin \: x. \: cos \: x) + ( {sin}^{2}   x +  {cos}^{2}x + 2sin \: x.cos \: x) }{ {sin}^{2} x -  {cos}^{2} x}

\huge\mathcal{\green{Now,}}

 {sin}^{2} x +  {cos}^{2} x = 1

\huge\mathcal{\green{Therefore,}}

 \frac{1 - 2sin \: x.cos \: x + \:  1 +  \: 2sinx.cos \: x}{ {sin}^{2}x -  {cos}^{2} x }  =  \frac{2}{ {sin}^{2}x -  {cos}^{2} x }

\huge\mathcal{\green{Also}}

 {cos}^{2} x = 1 -  {sin}^{2} x

\huge\mathcal{\green{Therefore,}}

 =  >  \frac{2}{ {sin}^{2} x \:  - (1 -  {sin}^{2}x) }

 \huge=  >  \frac{2}{ {sin}^{2} x +  {sin}^{2} x - 1 }  =  \frac{2}{2  \: {sin}^{2} x - 1}

= R.H.S

□ Hence, proved.

\huge\mathcal{\green{All \ the \ very \ best!}}

\huge\mathfrak{\red{@MissTranquil}}

\huge\fbox{\orange{ be \ brainly}}

Attachments:
Answered by avinash9631
11

\huge{\mathcal{\purple{A}\green{N}\pink{S}\blue{W}\purple{E}\green{R}\pink{!}}}!

above is the right answer

Similar questions