Math, asked by srijahazra, 4 months ago

Prove that
sin thita-2 sine^3thita/
2 cos^3thita-cos thita =
tan thita​

Answers

Answered by vipashyana1
3

Answer:

 \frac{sinθ - 2 {sin}^{3} θ}{2 {cos}^{3}θ   -  cosθ}  = tanθ \\  \frac{sinθ(1 - 2 {sin}^{2} θ)}{cosθ(2  {cos}^{2}θ - 1)}  = tanθ \\  \frac{sinθ(1 -  {sin}^{2} θ -  {sin}^{2}θ) }{cosθ( {cos}^{2} θ  +  {cos}^{2}θ - 1) }  = tanθ \\  \frac{sinθ( {cos}^{2} θ -  {sin}^{2}θ) }{cosθ( {cos}^{2} θ -  {sin}^{2}θ )}  = tanθ \\  \frac{sinθ}{cosθ}  = tanθ \\  tanθ= tanθ \\ LHS=RHS \\ Hence \: proved

Similar questions