Math, asked by jainmanyata01, 1 month ago

Prove that:- sin tita tan tita / 1-cos tita = 1 + sec tita
Please answer as soon as possible ​

Answers

Answered by 14826738m
1

Step-by-step explanation:

here is your answer

please mark as brainliest

all the best for your exams

Attachments:
Answered by sabanasim321
1

Step-by-step explanation:

l.h.s

 =  \sin( \alpha )  \times  \tan( \alpha ) \div 1 -  \cos( \alpha )   \\  =  \sin( \alpha )  \  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } \div 1 -  \cos( \alpha  \\  =  \frac{ \ { \sin( \ \alpha ) }^{2}  }{ \cos( \alpha )(1 -  \cos( \alpha ))  }  \\  =   \frac{1 -  { \cos( \alpha ) }^{2}}{cos( \alpha )(1 -  \cos( \alpha ))}   \\ =    \frac{(1 -  \cos( \alpha ))(1 +  \cos( \alpha ))  }{ \cos( \alpha )(1 -  \cos( \alpha ) ) } \\  =  \frac{1 +  \cos( \alpha ) }{ \cos( \alpha ) }  \\  =  \frac{1}{ \cos( \alpha ) }  + 1 \\  =  \sec( \alpha )  + 1 \\  = r.h.s

Similar questions