Math, asked by adityagupta5373, 11 months ago

Prove that sin(u+iv)=x+iy then prove x^2/cos^2x -y^2/cos^2u=1

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{sin(u+i\,v)=x+i\,y}

\underline{\textbf{To prove:}}

\mathsf{\dfrac{x^2}{sin^2u}-\dfrac{y^2}{cos^2v}=1}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{sin(u+i\,v)=x+i\,y}

\textsf{Using the identity,}

\boxed{\mathsf{Sin(A+B)=sinA\,cosB+cosA\,sinB}}

\mathsf{sin\,u\;cos\,iv+cos\,u\;sin\,iv=x+i\,y}

\mathsf{Using,}

\boxed{\mathsf{sin\,ix=i\;sinhx\;\;\&\;\;cos\,ix=coshx}}

\mathsf{sin\,u\;cosh\,v+cos\,u\;i\,sinh\,v=x+i\,y}

\mathsf{sin\,u\;cosh\,v+i\;cos\,u\;sinh\,v=x+i\,y}

\textsf{Separating real and imaginary parts, we get}

\mathsf{sinu\;cosh\,v=x\;\;\;\&\;\;\;cosu\;sinh\,v=y}

\mathsf{cosh\,v=\dfrac{x}{sinu}\;\;\;\&\;\;\;sinh\,v=\dfrac{y}{cosu}}

\textsf{We know that,}

\mathsf{cosh^2v-sinh^2v=1}

\mathsf{\left(\dfrac{x}{sinu}\right)^2-\left(\dfrac{y}{cosu}\right)^2=1}

\implies\boxed{\mathsf{\dfrac{x^2}{sin^2u}-\dfrac{y^2}{cos^2u}=1}}

\underline{\textbf{Find more:}}

X/acosθ+y/bsinθ=1 and x/asinθ-y/bcosθ=1, prove that x²/a²+y²/b²=2.

https://brainly.in/question/15922910

Similar questions