Math, asked by anuraggowda2007, 10 months ago

Prove that sin x - sin y / cos x + cos y = tan (x-y/2)​

Answers

Answered by shadowsabers03
7

We know the trigonometric identities,

\sin x-\sin y=2\cos\left (\dfrac {x+y}{2}\right)\sin\left (\dfrac {x-y}{2}\right)

And,

\cos x+\cos y=2\cos\left (\dfrac {x+y}{2}\right)\cos\left (\dfrac {x-y}{2}\right)

Thus,

\textsf{LHS}\\\\\\=\dfrac{\sin x-\sin y}{\cos x+\cos y}\\\\\\=\dfrac{2\cos\left (\dfrac {x+y}{2}\right)\sin\left (\dfrac {x-y}{2}\right)}{2\cos\left (\dfrac {x+y}{2}\right)\cos\left (\dfrac {x-y}{2}\right)}\\\\\\=\dfrac{\sin\left (\dfrac {x-y}{2}\right)}{\cos\left (\dfrac {x-y}{2}\right)}\\\\\\=\tan\left (\dfrac{x-y}{2}\right)\\\\\\=\textsf {RHS}

Hence Proved!

Similar questions