Prove that : sin (x+y) sin (x-y) + sin (y+z) sin (y-z) +sin (z+x) sin(z-x) = 0
Answers
LHS :(sinx)^2 - (siny)^2 + (siny)^2 - (sinz)^2 + (sinz)^2 - (sinx)^2
=0
RHS:0
Hence Proved.
Let A = y-z, B= z-x and C= x-y,
so that A+B+C=0
We know that,
Sin 2A + sin 2B + sin 2C
= 2 sin (A+B) Cos (A-B) + 2 sin C cos C
= -2 sin C cos(A-B) + 2 sinC cosC
= -2 sin C [cos (A-B)- cos C]
= -2 sin C [cos (A-B)-cos(A+B)]
= - 4 sin A sin B sin C ....(1)
Now sin x sin y sin(x − y)
=1/2[cos(x − y) − cos(x + y)] sin(x − y)
=1/2[cos(x − y) sin(x − y) − cos(x + y) sin (x − y)]
=1/4[2cos(x − y) sin (x − y) − 2cos(x + y) sin (x − y)]
=1/4[sin 2(x − y) − sin 2x + sin 2y] ...(2)
Similarly,
sin y sin z sin(y − z) =1/4[sin 2(y − z) − sin 2y + sin 2z]... (3)
sin z sin x sin(z − x) =1/4[sin 2(z − x) − sin 2z + sin 2x]...(4)
Adding (2), (3) and (4)
sin x sin y sin(x − y) + sin y sin z sin(y − z) + sin z sin x sin(z − x)
=1/4[sin 2A + sin 2B + sin 2C]
=1/4[−4 sin A sin B sin C ]
= −sin A sin B sin C ..................................(from (1)
⇒ sin x sin y sin(x − y) + sin y sin z sin(y − z) + sin z sin x sin(z − x) + sin A sin B sin C = 0