Math, asked by shivansh447, 2 months ago

prove that sin(x+y)/sin(x-y) = tanx+Tany/tanx- tany​

Answers

Answered by BrainlyTwinklingstar
1

Given that,

 \sf \dfrac{sin(x+y)}{sin(x-y)} =  \dfrac{tanx+tany}{tanx- tany}

 \sf LHS = \dfrac{sin(x+y)}{sin(x-y)}

we know that,

Sin (x + y) = sinx cosy + cosx siny and

Sin (x - y) = sinx cosy - cosx siny

 \sf = \dfrac{ sinx \:  cosy + cosx  \: siny}{sinx \:  cosy  -  cosx \:  siny}

 \sf = \dfrac{  \dfrac{sinx \:  cosy}{cosx \: cosy} + \dfrac{ cosx  \: siny}{cosx \: cosy}}{ \dfrac{sinx \:  cosy}{cosx \: cosy}  -   \dfrac{cosx \:  siny}{cosx \: cosy}}

 \sf = \dfrac{  \dfrac{sinx }{cosx } + \dfrac{ siny}{cosy }}{ \dfrac{sinx }{cosx }  -   \dfrac{  siny}{cosy}}

we know that,

 \sf \dfrac{sinx}{cosx}  = tanx

 \sf = \dfrac{tanx + tany}{tanx - tany}  = RHS

LHS = RHS

So,

 \sf \dfrac{sin(x+y)}{sin(x-y)} =  \dfrac{tanx+tany}{tanx- tany}

Hence proved !

Similar questions