Math, asked by lobsangpanten143, 16 days ago

Prove that sin (x+y) /sin (x−y) = tanx+tany/tanx−​tany

Answers

Answered by anindyaadhikari13
2

Solution:

We have to prove that:

 \rm \longrightarrow \dfrac{ \sin(x + y) }{ \sin(x - y) }  = \dfrac{ \tan(x)  +  \tan(y) }{ \tan(x) -  \tan(y) }

Taking Left Hand Side, we get:

 \rm=\dfrac{ \sin(x + y) }{ \sin(x - y) }

Can be written as:

 \rm=\dfrac{ \sin(x) \cos(y)  +  \cos(x)  \sin(y) }{ \sin(x) \cos(y) -  \cos(x) \sin(y) }

Dividing both numerator and denominator by cos(x) cos(y), we get:

 \rm=\dfrac{ \dfrac{ \sin(x) \cos(y)  +  \cos(x)  \sin(y) }{ \cos(x) \cos(y)  }}{ \dfrac{\sin(x) \cos(y) -  \cos(x) \sin(y) }{ \cos(x)  \cos(y) }}

 \rm=\dfrac{ \dfrac{ \sin(x) \cos(y)}{ \cos(x) \cos(y)} +  \dfrac{ \cos(x)  \sin(y) }{ \cos(x)  \cos(y) } }{ \dfrac{ \sin(x) \cos(y)}{ \cos(x) \cos(y)} - \dfrac{ \cos(x)  \sin(y) }{ \cos(x)  \cos(y) } }

 \rm=\dfrac{ \dfrac{ \sin(x)}{ \cos(x) } +  \dfrac{\sin(y) }{\cos(y) } }{ \dfrac{ \sin(x)}{ \cos(x)} - \dfrac{\sin(y) }{\cos(y) } }

 \rm = \dfrac{ \tan(x) +  \tan(y) }{ \tan(x) -  \tan(y) }

 \rm = RHS

Hence Proved.

Additional Information:

 \rm1. \: \sin(\alpha+\beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta)

 \rm2.\: \cos(\alpha+\beta) = \cos(\alpha) \cos(\beta) -  \sin(\alpha) \sin(\beta)

 \rm 3.\: \tan(\alpha+\beta) = \dfrac{ \tan( \alpha) + \tan( \beta ) }{1 -  \tan( \alpha ) \tan( \beta ) }

 \rm 4. \: \sin(\alpha - \beta) = \sin(\alpha) \cos(\beta) -  \cos(\alpha) \sin(\beta)

 \rm 5.\: \cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)

 \rm 6.\: \tan(\alpha - \beta) = \dfrac{ \tan( \alpha) - \tan( \beta ) }{1 + \tan( \alpha ) \tan( \beta ) }

Similar questions
Math, 9 months ago