Prove that Sin0(1+tan0) +cos0(1+cot0)=Sec0+ cosec0.
Answers
Answered by
13
To prove Sin0(1+tan0) + cos0(1+cot0)=sec0+cosec0
Taking LHS = Sin0(1+tan0) +cos0(1+cot0)
=sin0+sin0×tan0 +cos0+cos0×cot0
= sin0+ sin20/cos0 +cos0+cos2/sin0
=(sin0xcos0+sin20)/cos0+(cos0×sin0+cos20)/sin0
= (sin20(cos0+sin0)+cos20(sin0+cos0)/sin0×cos0
=sin2cos0+sin30+cos20+sino+cos30)/sin0xcos0
=(sin2cos0+cos30+cos2sin0+sin30)/sin0×cos0
=(cos0(sin20+cos20)+sin0(cos20+sin20)/sin0xcos0
=(cos0×1 + sin0×1)/sin0×cos0
=cos0/sino×cos0 + sin0/sin0×cos0
=1/sin0 + 1/cos0
=cosec0 + sec0
= sec0 + cosec0 = RHS
Hence proved
Answered by
0
Answer:
zkcmc g
jcnxvx bi,mix.gy6, to u4
Similar questions