prove that sin0/(sec0+tan0-1) +cos0/(cosec0+cot0-1) = 1
Answers
Answered by
2
sinΘ/(1/cosΘ+sinΘ/cosΘ–1) + cosΘ/(1/sinΘ+cosΘ/sinΘ-1)
=sinΘ/ (1+sinΘ-cosΘ)/cosΘ + cosΘ/ (1+cosΘ-sinΘ)/sinΘ
=sinΘcosΘ/(1+sinΘ-cosΘ) + sinΘ cosΘ/(1-sinΘ+cosΘ)
=sinΘcosΘ(1-sinΘ+cosΘ) + sinΘcosΘ(1+sinΘ-cosΘ) / (1+sinΘ-cosΘ)*(1-sinΘ+cosΘ)
=sinΘcosΘ(1-sinΘ+cosΘ + 1+sinΘ-cosΘ) / {(1)^2 – (sinΘ-cosΘ)^2}
=sinΘcosΘ(2) / {1 – (sin^2+ cos^2 – 2sinΘcosΘ)}
=2sinΘcosΘ / {1 – (1 – 2sinΘcosΘ)}
=2sinΘcosΘ / {1-1+2sinΘcosΘ}
=2sinΘcosΘ / 2sinΘcosΘ
=1=RHS. (proved)
Answered by
15
To Prove :-
Solution :-
Hence proved.
Similar questions