Math, asked by BinilBinoy, 5 months ago

Prove that sin10×sin50×sin70=1/8

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have

 \sin(10) . \sin(50) . \sin(70)

 =  \sin(90 - 80) . \sin(90 - 40) . \sin(90 - 20)

 =  \cos(80) . \cos(40) . \cos(20)

 =  \cos(20) . \cos(2 \times 20). \cos(4 \times 20)   \\

 =  \cos(20) . \cos(2 \times 20). \cos( {2}^{2}  \times 20)   \\

Now, we know that,

 \cos( \alpha ) . \cos(2 \alpha ). \cos( {2}^{2}  \alpha )  .... \cos( {2}^{n - 1}  \alpha )  =  \frac{ \sin( {2}^{n}  \alpha ) }{ {2}^{n}  \sin( \alpha ) }  \\

 =  \frac{ \sin( {2}^{3} \times 20 ) }{ {2}^{3}  \sin(20) }  \\

  = \frac{ \sin(160) }{8 \sin(20) } \\

 =  \frac{ \sin(180 - 20) }{8 \sin(20) }  \\

 =  \frac{ \sin(20) }{8 \sin(20) }  \\

 =  \frac{1}{8}  \\

Similar questions